Skip to main content
Log in

Roles of Atox1 and p53 in the trafficking of copper-64 to tumor cell nuclei: implications for cancer therapy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Owing to its cytotoxicity, free copper is chelated by protein side chains and does not exist in vivo. Several chaperones transport copper to various cell compartments, but none have been identified that traffic copper to the nucleus. Copper-64 decays by β + and β emission, allowing positron emission tomography and targeted radionuclide therapy for cancer. Because the delivery of 64Cu to the cell nucleus may enhance the therapeutic effect of copper radiopharmaceuticals, elucidation of the pathway(s) involved in transporting copper to the tumor cell nucleus is important for optimizing treatment. We identified Atox1 as one of the proteins that binds copper in the nucleus. Mouse embryonic fibroblast cells, positive and negative for Atox1, were used to determine the role of Atox1 in 64Cu transport to the nucleus. Mouse embryonic fibroblast Atox1+/+ cells accumulated more 64Cu in the nucleus than did Atox1−/− cells. HCT 116 colorectal cancer cells expressing p53 (+/+) and not expressing p53 (−/−) were used to evaluate the role of this tumor suppressor protein in 64Cu transport. In cells treated with cisplatin, the uptake of 64Cu in the nucleus of HCT 116 p53+/+ cells was greater than that in HCT 116 p53−/− cells. Atox1 expression increased in HCT 116 p53+/+ and p53−/− cells treated with cisplatin; however, Atox1 localized to the nuclei of p53+/+ cells more than in the p53−/− cells. The data presented here indicate that Atox1 is involved in copper transport to the nucleus, and cisplatin affects nuclear transport of 64Cu in HCT 116 cells by upregulating the expression and the nuclear localization of Atox1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

Ctr1:

Copper transporter 1

HPLC:

High-performance liquid chromatography

mAb:

Monoclonal antibody

MEF:

Mouse embryonic fibroblast

PBS:

Phosphate-buffered saline

PET:

Positron emission tomography

siRNA:

Small interfering RNA

References

  1. Puig S, Thiele DJ (2002) Curr Opin Chem Biol 6:171–180

    Article  CAS  PubMed  Google Scholar 

  2. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Science 284:805–808

    Article  CAS  PubMed  Google Scholar 

  3. Anderson CJ, Ferdani R (2009) Cancer Biother Radiopharm 24:379–393. doi:10.1089/cbr.2009.0674

    Article  CAS  PubMed  Google Scholar 

  4. Lewis MR, Wang M, Axworthy DB, Theodore LJ, Mallet RW, Fritzberg AR, Welch MJ, Anderson CJ (2003) J Nucl Med 44:1284–1292

    CAS  PubMed  Google Scholar 

  5. Anderson CJ, Pajeau TS, Edwards WB, Sherman EL, Rogers BE, Welch MJ (1995) J Nucl Med 36:2315–2325

    CAS  PubMed  Google Scholar 

  6. Connett JM, Anderson CJ, Guo LW, Schwarz SW, Zinn KR, Rogers BE, Siegel BA, Philpott GW, Welch MJ (1996) Proc Natl Acad Sci USA 93:6814–6818

    Article  CAS  PubMed  Google Scholar 

  7. Wang M, Caruano AL, Lewis MR, Meyer LA, VanderWaal RP, Anderson CJ (2003) Cancer Res 63:6864–6869

    CAS  PubMed  Google Scholar 

  8. George AM, Sabovljev SA, Hart LE, Cramp WA, Harris G, Hornsey S (1987) Br J Cancer Suppl 8:141–144

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Chiu SM, Xue LY, Friedman LR, Oleinick NL (1992) Radiat Res 129:184–191

    Article  CAS  PubMed  Google Scholar 

  10. Chiu SM, Xue LY, Friedman LR, Oleinick NL (1993) Biochemistry 32:6214–6219

    Article  CAS  PubMed  Google Scholar 

  11. Abada P, Howell SB (2010) Met Based Drugs 2010:317581. doi:10.1155/2010/317581

    Article  PubMed Central  PubMed  Google Scholar 

  12. Robinson NJ, Winge DR (2010) Annu Rev Biochem 79:537–562. doi:10.1146/annurev-biochem-030409-143539

    Article  CAS  PubMed  Google Scholar 

  13. Prohaska JR, Gybina AA (2004) J Nutr 134:1003–1006

    CAS  PubMed  Google Scholar 

  14. Howell SB, Safaei R, Larson CA, Sailor MJ (2010) Mol Pharmacol 77:887–894. doi:10.1124/mol.109.063172

    Article  CAS  PubMed  Google Scholar 

  15. Palm ME, Weise CF, Lundin C, Wingsle G, Nygren Y, Bjorn E, Naredi P, Wolf-Watz M, Wittung-Stafshede P (2011) Proc Natl Acad Sci USA 108:6951–6956. doi:10.1073/pnas.1012899108

    Article  CAS  PubMed  Google Scholar 

  16. Boal AK, Rosenzweig AC (2009) J Am Chem Soc 131:14196–14197. doi:10.1021/ja906363t

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rabik CA, Dolan ME (2007) Cancer Treat Rev 33:9–23. doi:10.1016/j.ctrv.2006.09.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fuertes MA, Alonso C, Perez JM (2003) Chem Rev 103:645–662. doi:10.1021/cr020010d

    Article  CAS  PubMed  Google Scholar 

  19. Bragado P, Armesilla A, Silva A, Porras A (2007) Apoptosis 12:1733–1742. doi:10.1007/s10495-007-0082-8

    Article  CAS  PubMed  Google Scholar 

  20. Eiblmaier M, Meyer LA, Anderson CJ (2008) Cancer Biol Ther 7:63–69

    Article  CAS  PubMed  Google Scholar 

  21. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  22. Safaei R, Maktabi MH, Blair BG, Larson CA, Howell SB (2009) J Inorg Biochem 103:333–341. doi:10.1016/j.jinorgbio.2008.11.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD (2001) Proc Natl Acad Sci USA 98:6848–6852. doi:10.1073/pnas.111058498

    Article  CAS  PubMed  Google Scholar 

  24. Holzer AK, Katano K, Klomp LW, Howell SB (2004) Clin Cancer Res 10:6744–6749. doi:10.1158/1078-0432.CCR-04-0748

    Article  CAS  PubMed  Google Scholar 

  25. Petris MJ, Smith K, Lee J, Thiele DJ (2003) J Biol Chem 278:9639–9646. doi:10.1074/jbc.M209455200

    Article  CAS  PubMed  Google Scholar 

  26. Jandial DD, Farshchi-Heydari S, Larson CA, Elliott GI, Wrasidlo WJ, Howell SB (2009) Clin Cancer Res 15:553–560. doi:10.1158/1078-0432.CCR-08-2081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Itoh S, Kim HW, Nakagawa O, Ozumi K, Lessner SM, Aoki H, Akram K, McKinney RD, Ushio-Fukai M, Fukai T (2008) J Biol Chem 283:9157–9167. doi:10.1074/jbc.M709463200

    Article  CAS  PubMed  Google Scholar 

  28. McRae R, Lai B, Fahrni CJ (2010) J Biol Inorg Chem 15:99–105. doi:10.1007/s00775-009-0598-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Miyayama T, Suzuki KT, Ogra Y (2009) Toxicol Appl Pharmacol 237:205–213. doi:10.1016/j.taap.2009.03.024

    Article  CAS  PubMed  Google Scholar 

  30. Hamza I, Prohaska J, Gitlin JD (2003) Proc Natl Acad Sci USA 100:1215–1220. doi:10.1073/pnas.0336230100

    Article  CAS  PubMed  Google Scholar 

  31. Beckerman R, Prives C (2010) Cold Spring Harb Perspect Biol 2:a000935. doi:10.1101/cshperspect.a000935

    Article  PubMed  Google Scholar 

  32. Holzer AK, Manorek GH, Howell SB (2006) Mol Pharmacol 70:1390–1394. doi:10.1124/mol.106.022624

    Article  CAS  PubMed  Google Scholar 

  33. Holzer AK, Samimi G, Katano K, Naerdemann W, Lin X, Safaei R, Howell SB (2004) Mol Pharmacol 66:817–823. doi:10.1124/mol.104.001198

    Article  CAS  PubMed  Google Scholar 

  34. Larson CA, Blair BG, Safaei R, Howell SB (2009) Mol Pharmacol 75:324–330. doi:10.1124/mol.108.052381

    Article  CAS  PubMed  Google Scholar 

  35. Mason DA, Shulga N, Undavai S, Ferrando-May E, Rexach MF, Goldfarb DS (2005) FEMS Yeast Res 5:1237–1251. doi:10.1016/j.femsyr.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  36. Ferrando-May E, Cordes V, Biller-Ckovric I, Mirkovic J, Gorlich D, Nicotera P (2001) Cell Death Differ 8:495–505. doi:10.1038/sj.cdd.4400837

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health/National Cancer Institute grant 5R01CA064475 (C.J.A.) and Department of Energy grant DE-FG02-08ER64671 (Integrated Research Training Program of Excellence in Radiochemistry awarded to Suzanne Lapi supporting Y.G.). The mass spectrometry portion of the project was supported by grants from the National Center for Research Resources (5P41RR000954-35) and the National Institute of General Medical Sciences (8 P41 GM103422-35) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn J. Anderson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaino, W., Guo, Y., Chang, A.J. et al. Roles of Atox1 and p53 in the trafficking of copper-64 to tumor cell nuclei: implications for cancer therapy. J Biol Inorg Chem 19, 427–438 (2014). https://doi.org/10.1007/s00775-013-1087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1087-0

Keywords

Navigation