Skip to main content

Advertisement

Log in

Assessing abrasion of orthodontic surface sealants using a modified ophthalmic optical coherence tomography device

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

Optical coherence tomography (OCT) is a clinical standard in ophthalmology. Currently, its application in dentistry is gaining increasing interest. In this study, we tested the possibility to use a modified commercially available spectral domain OCT (SD-OCT) to assess the layer thickness of orthodontic surface sealants.

Materials and methods

Reference samples of surface sealants for calibration and repeatability testing were measured using a micrometer screw. SD-OCT measurements were compared with micro-CT and light microscopic analyses. After validating the calibration of the SD-OCT, surface sealant layer thickness after aging (thermo cycling) and simulation of professional tooth cleaning (PTC) was assessed using the SD-OCT on 45 extracted teeth assigned to three test groups (n = 15 each): Light Bond™ Sealant, Pro Seal®, and Opal® Seal.

Results

SD-OCT showed excellent repeatability and accuracy for measurements of surface sealant layer thickness. Compared with micro-CT, SD-OCT showed better accordance with the reference measurements. The analysis of surface sealants after thermo cycling and PTC revealed poor resistance of Light Bond after only aging and demonstrated substantial wear of all sealants after aging and PTC.

Conclusion

Imaging using commercially available ophthalmic SD-OCT might represent a suitable non-invasive methodology for longitudinal assessments of surface sealant layer thickness in vitro and in vivo.

Clinical relevance

SD-OCT might be a suitable non-invasive method for longitudinal assessments of surface sealant durability in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abreu-Gonzalez R, Gallego-Pinazo R, Dolz-Marco R, Donate Lopez J, Lopez Guajardo L (2016) Swept source OCT versus spectral domain OCT: myths and realities. Arch Soc Esp Oftalmol 91:459–460

    Article  Google Scholar 

  2. Algarni A, Kang H, Fried D, Eckert GJ, Hara AT (2016) Enamel thickness determination by optical coherence tomography: in vitro validation. Caries Res 50:400–406

    Article  Google Scholar 

  3. Alsayed EZ, Hariri I, Sadr A, Nakashima S, Bakhsh TA, Shimada Y, Sumi Y, Tagami J (2015) Optical coherence tomography for evaluation of enamel and protective coatings. Dent Mater J 34:98–107

    Article  Google Scholar 

  4. Bock NC, Seibold L, Heumann C, Gnandt E, Roder M, Ruf S (2017) Changes in white spot lesions following post-orthodontic weekly application of 1.25 per cent fluoride gel over 6 months-a randomized placebo-controlled clinical trial. Part II: clinical data evaluation. Eur J Orthod 39:144–152

    PubMed  Google Scholar 

  5. Bortolotto T, Bahillo J, Richoz O, Hafezi F, Krejci I (2015) Failure analysis of adhesive restorations with SEM and OCT: from marginal gaps to restoration loss. Clin Oral Investig 19:1881–1890

    Article  Google Scholar 

  6. Christensen RP, Bangerter VW (1984) Determination of rpm, time, and load used in oral prophylaxis polishing in vivo. J Dent Res 63:1376–1382

    Article  Google Scholar 

  7. de Oliveira BP, Camara AC, Duarte DA, Gomes ASL, Heck RJ, Antonino ACD, Aguiar CM (2017) Detection of apical root cracks using spectral domain and swept-source optical coherence tomography. J Endod 43:1148–1151

    Article  Google Scholar 

  8. Engel S, Jost-Brinkmann PG, Spors CK, Mohammadian S, Muller-Hartwich R (2009) Abrasive effect of air-powder polishing on smoothsurface sealants. J Orofac Orthop 70:363–370

    Article  Google Scholar 

  9. Erbe, C., Alhafne, A., Jahn, A., Wehrbein, H. (2013). Glattflächenversiegler in der kieferorthopädischen Praxis – eine Umfrage zu Häufigkeiten, Anwendung und Kontrolle. 86 Wissenschaftliche Jahrestagung der deutschen Gesellschaft für Kieferorthopädie Abstractband 91 (P 40)

  10. Erbe, C., Deckers, I., Schmidtmann, H., Wehrbein, H. (2014) Optische Analyse zum Verhalten von Glattflächenversieglern bei mechanischer, thermischer und chemischer Belastung - in vitro. 87 Wissenschaftliche Jahrestagung der deutschen Gesellschaft für Kieferorthopädie Abstractband 60 (VP 9)

  11. Espigares J, Sadr A, Hamba H, Shimada Y, Otsuki M, Tagami J, Sumi Y (2015) Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography. J Med Imaging (Bellingham) 2:014001

    Article  Google Scholar 

  12. Felix MC, Fleckenstein J, Kirschner S, Hartmann L, Wenz F, Brockmann MA, Glatting G, Giordano FA (2015) Image-guided radiotherapy using a modified industrial micro-CT for preclinical applications. PLoS One 10:e0126246

    Article  Google Scholar 

  13. Korbmacher-Steiner HM, Schilling AF, Huck LG, Kahl-Nieke B, Amling M (2013) Laboratory evaluation of toothbrush/toothpaste abrasion resistance after smooth enamel surface sealing. Clin Oral Investig 17:765–774

    Article  Google Scholar 

  14. Leao Filho JC, Braz AK, de Souza TR, de Araujo RE, Pithon MM, Tanaka OM (2013) Optical coherence tomography for debonding evaluation: an in-vitro qualitative study. Am J Orthod Dentofacial Orthop 143:61–68

    Article  Google Scholar 

  15. Lo EC, Zhi QH, Itthagarun A (2010) Comparing two quantitative methods for studying remineralization of artificial caries. J Dent 38:352–359

    Article  Google Scholar 

  16. Lotmar W (1971) Theoretical eye model with aspherics*. J Opt Soc Am 61:1522–1529

    Article  Google Scholar 

  17. Maia AM, de Freitas AZ, de LCS, Gomes AS, Karlsson L (2016) Evaluation of dental enamel caries assessment using quantitative light induced fluorescence and optical coherence tomography. J Biophotonics 9:596–602

    Article  Google Scholar 

  18. Majkut P, Sadr A, Shimada Y, Sumi Y, Tagami J (2015) Validation of optical coherence tomography against micro-computed tomography for evaluation of remaining coronal dentin thickness. J Endod 41:1349–1352

    Article  Google Scholar 

  19. Morresi AL, D'Amario M, Capogreco M, Gatto R, Marzo G, D'Arcangelo C, Monaco A (2014) Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater 29:295–308

    Article  Google Scholar 

  20. Olejniczak AJ, Grine FE (2006) Assessment of the accuracy of dental enamel thickness measurements using microfocal X-ray computed tomography. Anat Rec A Discov Mol Cell Evol Biol 288:263–275

    Article  Google Scholar 

  21. Park KJ, Haak R, Ziebolz D, Krause F, Schneider H (2017) OCT assessment of non-cavitated occlusal carious lesions by variation of incidence angle of probe light and refractive index matching. J Dent 62:31–35

    Article  Google Scholar 

  22. Podoleanu A, Charalambous I, Plesea L, Dogariu A, Rosen R (2004) Correction of distortions in optical coherence tomography imaging of the eye. Phys Med Biol 49:1277–1294

    Article  Google Scholar 

  23. Raadal M (1978) Abrasive wear of filled and unfilled resins in vitro. Scand J Dent Res 86:399–403

    PubMed  Google Scholar 

  24. Ryf S, Flury S, Palaniappan S, Lussi A, van Meerbeek B, Zimmerli B (2012) Enamel loss and adhesive remnants following bracket removal and various clean-up procedures in vitro. Eur J Orthod 34:25–32

    Article  Google Scholar 

  25. Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA (2010) Application of micro-CT in small animal imaging. Methods 50:2–13

    Article  Google Scholar 

  26. Shellis RP (1978) A synthetic saliva for cultural studies of dental plaque. Arch Oral Biol 23:485–489

    Article  Google Scholar 

  27. Shimada Y, Sadr A, Sumi Y, Tagami J (2015) Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Curr Oral Health Rep 2:73–80

    Article  Google Scholar 

  28. Sugiura M, Kitasako Y, Sadr A, Shimada Y, Sumi Y, Tagami J (2016) White spot lesion remineralization by sugar-free chewing gum containing bio-available calcium and fluoride: a double-blind randomized controlled trial. J Dent 54:86–91

    Article  Google Scholar 

  29. Suske A, Poschke A, Schrock P, Kirschner S, Brockmann M, Staszyk C (2016) Infundibula of equine maxillary cheek teeth. Part 1: development, blood supply and infundibular cementogenesis. Vet J 209:57–65

    Article  Google Scholar 

  30. Swain MV, Xue J (2009) State of the art of micro-CT applications in dental research. Int J Oral Sci 1:177–188

    Article  Google Scholar 

  31. Tezuka H, Shimada Y, Matin K, Ikeda M, Sadr A, Sumi Y, Tagami J (2016) Assessment of cervical demineralization induced by Streptococcus mutans using swept-source optical coherence tomography. J Med Imaging (Bellingham) 3:014504

    Article  Google Scholar 

  32. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS (1999) Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt 38:2092–2096

    Article  Google Scholar 

  33. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50:3432–3437

    Article  Google Scholar 

  34. Yao J, Li J, Wang Y, Huang H (2014) Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent 112:649–657

    Article  Google Scholar 

  35. Yip KH, Smales RJ, Kaidonis JA (2004) Differential wear of teeth and restorative materials: clinical implications. Int J Prosthodont 17:350–356

    PubMed  Google Scholar 

  36. Zingler S, Matthei B, Diercke K, Frese C, Ludwig B, Kohl A, Lux CJ, Erber R (2014) Biological evaluation of enamel sealants in an organotypic model of the human gingiva. Dent Mater 30:1039–1051

    Article  Google Scholar 

  37. Zingler S, Matthei B, Kohl A, Saure D, Ludwig B, Diercke K, Lux CJ, Erber R (2015) In vitro studies on the cytotoxic potential of surface sealants. J Orofac Orthop 76:66–78

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript is dedicated to the memory of Dr. Gerhard Zinser, who passed away on 19 November 2017.

The authors thank Ali Tafreshi, Joerg Fischer, Dr. Julian Weichsel, Dr. Stefan Schmidt, Ege Ilicak, and Dr. Gerhard Zinser (Heidelberg Engineering, Heidelberg, Germany) for providing OCT equipment and software.

Funding

The study was supported by a grant from the “physician scientist fellowship” to S. S. of the Medical Faculty of Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Şen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the ethics committee of the Medical Faculty of Heidelberg University (approval no. S-301/2011). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şen, S., Erber, R., Kunzmann, K. et al. Assessing abrasion of orthodontic surface sealants using a modified ophthalmic optical coherence tomography device. Clin Oral Invest 22, 3143–3157 (2018). https://doi.org/10.1007/s00784-018-2410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2410-5

Keywords

Navigation