Skip to main content

Advertisement

Log in

A very large C-loop in EGF domain IV is characteristic of the P28 family of ookinete surface proteins

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 07 March 2009

An Erratum to this article was published on 07 March 2009

An Erratum to this article was published on 07 March 2009

An Erratum to this article was published on 07 March 2009

An Erratum to this article was published on 07 March 2009

Abstract

The P28 family of proteins are 28 kDa proteins expressed on the surface of sexual stages—zygote, ookinete and young oocyst stages—of Plasmodium species when the parasite resides inside the mosquito midgut. Together with P25 proteins, P28 proteins protect the parasite from the harsh proteolytic environment prevailing inside the mosquito midgut. Vaccines against these proteins induce antibodies in vertebrate hosts that are capable of inhibiting parasite development in the mosquito midgut, thus preventing transmission of the parasite from the mosquito to another human host. These transmission-blocking vaccines are helpful in reducing the burden caused by malaria, which affects 300–600 million, and kills 1–3 million, people annually. The purpose of this study was to structurally characterise six members of the P28 family of ookinete surface proteins with the help of homology modelling, to compare these proteins in terms of transmission blocking and host parasite interactions, and to analyse phylogenetic relationships within the P28 family and with the P25 family. Our results indicate that all the members of the P28 family studied have four EGF domains arranged in triangular fashion with a very big C loop present in EGF domain IV, which could serve as a diagnostic feature of the P28 family as this loop is absent in the P25 family of ookinete surface proteins. The models of the P28 family of ookinete surface proteins obtained may help in understanding the biology of the parasite inside the mosquito midgut, and in designing transmission-blocking vaccines against malaria in the absence of experimentally determined structures of these important surface proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217. doi:10.1038/nature03342

    Article  CAS  Google Scholar 

  2. World Malaria Report Geneva. 2005 RBM/WHO/UNICEF, Geneva, Switzerland

  3. Kumar N, Carter R (1985) Biosynthesis of two stage-specific membrane proteins during transformation of Plasmodium gallinaceum zygotes into ookinetes. Mol Biochem Parasitol 14:127–139. doi:10.1016/0166-6851(85)90032-5

    Article  CAS  Google Scholar 

  4. Paton MG, Barker GC, Matsuoka H, Ramesar J, Janse CJ, Waters AP, Sinden RE (1993) Structure and expression of a post-transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei. Mol Biochem Parasitol 59:263–275. doi:10.1016/0166-6851(93)90224-L

    Article  CAS  Google Scholar 

  5. Winger LA, Tirawanchai N, Nicholas NJ, Carter HE, Smith JE, Sinden RE (1998) Ookinete antigens of Plasmodium berghei. Appearance on the zygote surface of an Mr 21 kD determinant identified by transmission-blocking monoclonal antibodies. Parasite Immunol 10:193–207. doi:10.1111/j.1365-3024.1988.tb00214.x

    Article  Google Scholar 

  6. Sinden RE, Winger L, Carter EH, Hartley RH, Tirawanchai N, Davies CS, Moore J, Sluiters JF (1987) Ookinete antigens of Plasmodium berghei: a light and electron-microscope immunogold study of expression of the 21 kDa determinant recognized by a transmission-blocking antibody. Proc R Soc Lond B Biol Sci 230:443–458. doi:10.1098/rspb.1987.0028

    CAS  Google Scholar 

  7. Duffy PE, Pimenta P, Kaslow D (1993) C: Pgs28 belongs to a family of epidermal growth factor-like antigens that are targets of malaria transmission-blocking antibodies. J Exp Med 177:505–510. doi:10.1084/jem.177.2.505

    Article  CAS  Google Scholar 

  8. Tomas AM, Margos G, Dimopoulos G, van Lin LH, Koning-Ward TF, Sinha R, Lupetti P, Beetsma AL, Rodriguez MC, Karras M, Hager A, Mendoza J, Butcher GA, Kafatos F, Janse CJ, Waters AP, Sinden RE (2001) P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J 20:3975–3983. doi:10.1093/emboj/20.15.3975

    Article  CAS  Google Scholar 

  9. Tsuboi T, Kaslow DC, Gozar MM, Tachibana M, Cao YM, Torii M (1998) Sequence polymorphism in two novel Plasmodium vivax ookinete surface proteins, Pvs25 and Pvs28 that are malaria transmission-blocking vaccine candidates. Mol Med 4:772–782

    CAS  Google Scholar 

  10. Carter R, Graves PM, Quakyi IA, Good MF (1989) Restricted or absent immune responses in human populations to Plasmodium falciparum gamete antigens that are targets of malaria transmission blocking antibodies. J Exp Med 169:135–147. doi:10.1084/jem.169.1.135

    Article  CAS  Google Scholar 

  11. Yoshida S, Ioka D, Matsuoka H, Endo H, Ishii A (2001) Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol 113:89–96. doi:10.1016/S0166-6851(00)00387-X

    Article  CAS  Google Scholar 

  12. Kaslow DC (1996) Transmission-blocking vaccine. In: Hoffman SL (ed) Malaria vaccine development: a multi-immune response approach. American Society for Microbiology, Washington, DC, pp 181–227

    Google Scholar 

  13. Han YS, Thompson J, Kafatos FC, Barillas-Mury C (2000) Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 19:6030–6040. doi:10.1093/emboj/19.22.6030

    Article  CAS  Google Scholar 

  14. Tsuboi T, Cao YM, Hitsumoto Y, Yanagi T, Kanbara H, Torii M (1997) Two antigens on zygotes and ookinetes of Plasmodium yoelii and Plasmodium berghei that are distinct targets of transmission blocking immunity. Infect Immun 65:2260–2264

    CAS  Google Scholar 

  15. Yoshida S, Matsuoka H, Luo E, Iwai K, Arai M, Sinden RE, Ishii A (1999) A single-chain antibody fragment specific for the Plasmodium berghei ookinete protein Pbs21 confers transmission blockade in the mosquito midgut. Mol Biochem Parasitol 104:195–204. doi:10.1016/S0166-6851(99)00158-9

    Article  CAS  Google Scholar 

  16. Duffy PE, Kaslow DC (1997) A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infect Immun 65:1109–1113

    CAS  Google Scholar 

  17. Saxena AK, Singh K, Su HP, Klein MM, Stower AW, Saul AJ, Long C, Garboczi DN (2006) Plasmodium P25 and P28, essential proteins for survival of the malaria parasite in the mosquito, are tile-like triangular prism. Nat Struct Mol Biol 13:90–91. doi:10.1038/nsmb1024

    Article  CAS  Google Scholar 

  18. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. doi:10.1093/nar/gkg563

    Article  CAS  Google Scholar 

  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 15:403–410

    Google Scholar 

  20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  21. Ramu C, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13):3497–3500. doi:10.1093/nar/gkg546

    Article  Google Scholar 

  22. Sali A, Blundell T (1993) L: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  Google Scholar 

  23. András F, Andrej S (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–2501. doi:10.1093/bioinformatics/btg362

    Article  CAS  Google Scholar 

  24. Fiser A, Kinh Gian Do R, Andrej S (2000) Ali: Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  Google Scholar 

  25. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 10:1093. doi:10.1093/nar/10.3.1093

    Google Scholar 

  26. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362. doi:10.1002/prot.340170404

    Article  CAS  Google Scholar 

  27. Laskowski RA, MacArthur MW, Moss DS, Thornton J (1993) M: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  28. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56. doi:10.1016/0263-7855(90)80070-V

    Article  CAS  Google Scholar 

  29. Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272–272. doi:10.1038/381272a0

    Article  CAS  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  31. Laskowaski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29:221–222. doi:10.1093/nar/29.1.221

    Article  Google Scholar 

  32. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  Google Scholar 

  33. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) Weblogo: A sequence logo generator. Genome Res 14:1188–1190. doi:10.1101/gr.849004

    Article  CAS  Google Scholar 

  34. Schneider TD, Stephens R (1990) M: Sequence Logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100. doi:10.1093/nar/18.20.6097

    Article  CAS  Google Scholar 

  35. Tsuboi T, Kaslow DC, Gozar MM, Tachibana M, Cao YM, Torii M (1998) Sequence polymorphism in two novel Plasmodium vivax ookinete surface proteins, Pvs25 and Pvs28 that are malaria transmission-blocking vaccine candidates. Mol Med 4:772–782

    CAS  Google Scholar 

  36. White NJ (2008) Plasmodium knowlesi: the fifth human malaria parasite. Clin Infect Dis 46:172–173. doi:10.1086/524889

    Article  CAS  Google Scholar 

  37. Waters AP, Higgins DG, McCutchan TF (1991) Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. Proc Natl Acad Sci USA 88:3140–3144. doi:10.1073/pnas.88.8.3140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.S. thanks CSIR (Council of Scientific and Industrial Research) for providing a fellowship. I thank my supervisor Dr. A. K. Saxena for allowing me to design and implement the protocols for this study independently.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babita Sharma.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00894-009-0483-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, B., Ambedkar, R.D. A very large C-loop in EGF domain IV is characteristic of the P28 family of ookinete surface proteins. J Mol Model 15, 309–321 (2009). https://doi.org/10.1007/s00894-008-0392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0392-y

Keywords

Navigation