Skip to main content
Log in

Explaining the inhibition of cyclin-dependent kinase 5 by peptides derived from p25 with molecular dynamics simulations and MM-PBSA

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A cyclin-dependent kinase (CDK) 5 inhibitory peptide (CIP) from p25 was recently reported to inhibit CDK5/p25 activity in vitro but had no effect on endogenous cdc2 kinase activity. This may lead to a specific CDK5 inhibition strategy in the treatment of neurodegeneration. However, the mechanism of the inhibition remains unclear. In this work, molecular dynamics simulations and energy decomposition calculation models were set up to investigate the deregulation mechanisms of CIP on CDK5 activity. The results show that truncation of the N, and C terminals of p25 introduces important conformational changes into a hydrophobic pocket that is crucial for accommodating Ile153 on the activation loop of CDK5. In addition, such truncations lead to distortion and displacement of the activation loop and consequently affect binding of the substrate peptide. New inhibition sites for selectively inhibiting the activity of CDK5 are also suggested.

T-loops and the hydrophobic pockets formed by residues from p25 (blue-gray) and cyclin-dependent kinase (CDK) 5 inhibitory peptide (CIP; red) in CDK5/p25/ATP/HHASPRK (green) and in CDK5/CIP/ATP/HHASPRK (orange). Ile153 interacting with p25 and CIP is colored in blue-gray and red, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Azevedo WF, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Proc Natl Acad Sci USA 93:2735–2740

    Article  Google Scholar 

  2. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Eur J Biochem 243:518–526

    Article  Google Scholar 

  3. Harper JW, Adams PD (2001) Chem Rev 101:2511–2526

    Article  CAS  Google Scholar 

  4. Hunter T, Pines J (1994) Cell 79:573–582

    Article  CAS  Google Scholar 

  5. Norbury C, Nurse P (1992) Annu Rev Biochem 61:441–470

    Article  CAS  Google Scholar 

  6. Sherr C (1996) Science 274:1672–1677

    Article  CAS  Google Scholar 

  7. Baumann K, Mandelkow EM, Biernat J, Piwnica-Worms H, Mandelkow E (1993) FEBS Lett 336:417–424

    Article  CAS  Google Scholar 

  8. Hisanaga S, Ishiguro K, Uchida T, Okumura E, Okano T, Kishimoto T (1993) J Biol Chem 268:15056–15060

    CAS  Google Scholar 

  9. Lew J, Winkfein RJ, Paudel HK, Wang JH (1992) J Biol Chem 267:25922–25926

    CAS  Google Scholar 

  10. Johnson LN, Lewis RJ (2001) Chem Rev 101:2209–2242

    Article  CAS  Google Scholar 

  11. Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH (2000) Neuron 28:697–711

    Article  CAS  Google Scholar 

  12. Paudel HK, Lew J, Ali Z, Wang JH (1993) J Biol Chem 268:23512–23518

    CAS  Google Scholar 

  13. Shuang RQ, Zhang L, Fletcher A, Groblewski GE, Pevsner J, Stuenkel EL (1998) J Biol Chem 273:4957–4966

    Article  CAS  Google Scholar 

  14. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, Pavletich NP (1995) Nature 376:313–320

    Article  CAS  Google Scholar 

  15. Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A (2001) Mol Cell 8:657–669

    Article  CAS  Google Scholar 

  16. Garrett MD, Fattaey A (1999) Curr Opin Genet Dev 9:104–111

    Article  CAS  Google Scholar 

  17. Webster KR (1998) Expert Opin Invest Drugs 7:865–887

    Article  CAS  Google Scholar 

  18. Bu B, Li J, Davies P, Vincent I (2002) J Neurosci 22:6515–6525

    CAS  Google Scholar 

  19. Lau LF, Ahlijanian MK (2003) 12:209–214

  20. Nguyen MD, Julien JP (2003) Neurosignals 12:215–220

    Article  CAS  Google Scholar 

  21. Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S (2003) Proc Natl Acad Sci USA 100:13650–13655

    Article  CAS  Google Scholar 

  22. Wang J, Liu S, Fu Y, Wang JH, Lu Y (2003) Nat Neurosci 6:1039–1047

    Article  CAS  Google Scholar 

  23. Crews CM, Mohan R (2000) Curr Opin Chem Biol 4:47–53

    Article  CAS  Google Scholar 

  24. Huew A, Mazitschek R, Giannis A (2003) Angew Chem Int Ed 42:2122–2138

    Article  Google Scholar 

  25. Knockaert M, Greengard P, Meijer L (2002) Trends Pharmacol Sci 23:417–425

    Article  CAS  Google Scholar 

  26. Sausville EA (2002) Trends Mol Med 8:S32–S37

    Article  CAS  Google Scholar 

  27. Sielecki TM, Boylan JF, Benfield PA, Trainor GL (2000) J Med Chem 43:1–18

    Article  CAS  Google Scholar 

  28. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L (2001) J Bio Chem 276:251–260

    Article  CAS  Google Scholar 

  29. Noble MEM, Endicott JA, Johnson LN (2004) Science 303:1800–1805

    Article  CAS  Google Scholar 

  30. Noble M, Barrett P, Endicott J, Johnson L, McDonnell J, Robertson G, Zawaira A (2005) Biochim Biophys Acta 1754:58–64

    CAS  Google Scholar 

  31. Honma T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H (2000) J Med Chem 44:4615–4627

    Article  Google Scholar 

  32. Honma T, Yoshizumi T, Hashimoto N, Hayashi K, Kawanishi N, Fukasawa K, Takaki T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Hayama T, Nishimura S, Morishima H (2001) J Med Chem 44:4628–4640

    Article  CAS  Google Scholar 

  33. Russo A, Jeffrey PD, Pavletich NP (1996) Nat Struct Biol 3:696–700

    Article  CAS  Google Scholar 

  34. Amin ND, Albers W, Pant HC (2002) J Neurosci Res 67:354–362

    Article  CAS  Google Scholar 

  35. Zheng YL, Li BS, Amin ND, Albers W, Pant HC (2002) Eur J Biochem 269:4427–4434

    Article  CAS  Google Scholar 

  36. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM Jr, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  37. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  38. Fox T, Kollman PA (1998) J Phys Chem B 102:8070–8079

    Article  CAS  Google Scholar 

  39. Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Wang J, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radme RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA (2002) AMBER 7. University of California, San Francisco

    Google Scholar 

  40. Mapelli M, Massimiliano L, Crovace C, Seeliger MA, Tsai LH, Meijer L, Musacchio A (2005) J Med Chem 48:671–679

    Article  CAS  Google Scholar 

  41. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  42. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  43. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  44. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  45. Massova I, Kollman PA (2000) Perspect Drug Discov 18:113–135

    Article  CAS  Google Scholar 

  46. Zhang B, Tan VBC, Lim KM, Tay TE (2006) J Comput Aided Mol Des 20:395–404

    Article  CAS  Google Scholar 

  47. Zhang B, Tan VBC, Lim KM, Tay TE (2007) Biochem 46:10841–10851

    Article  CAS  Google Scholar 

  48. Zhang B, Tan VBC, Lim KM, Tay TE, Zhuang SL (2007) J Mol Model 13:79–89

    Article  Google Scholar 

  49. Bao J, Zhang DW, Zhang JZ, Huang PL, Huang PL, Lee-Huang S (2007) FEBS Lett 581:2737–2742

    Article  CAS  Google Scholar 

  50. Hou TJ, Guo SL, Xu XJ (2002) J Phys Chem B 106:5527–5535

    Article  CAS  Google Scholar 

  51. Zhuang SL, Zou JW, Jiang YJ, Mao X, Zhang B, Liu HC, Yu QS (2005) J Med Chem 48:7208–7214

    Article  CAS  Google Scholar 

  52. Sanner MF, Olson AJ, Spehner JC (1996) Biopolymers 38:305–320

    Article  CAS  Google Scholar 

  53. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  54. Zhang B, Tan VBC, Lim KM, Tay TE (2007) J Chem Info Model 47:1877–1885

    Article  CAS  Google Scholar 

  55. Cook A, Lowe ED, Chrysina ED, Skamnaki VT, Oikonomakos NG, Johnson LN (2002) Biochemistry 41:7301–7311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent B. C. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, V.B.C., Zhang, B., Lim, K.M. et al. Explaining the inhibition of cyclin-dependent kinase 5 by peptides derived from p25 with molecular dynamics simulations and MM-PBSA. J Mol Model 16, 1–8 (2010). https://doi.org/10.1007/s00894-009-0514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0514-1

Keywords

Navigation