Skip to main content
Log in

Current status of extracorporeal ventricular assist devices in Japan

  • Review
  • Artificial Heart (Clinical)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Extracorporeal VADs are less expensive, their prices reimbursable by the health insurance being about one-sixth of those of implantable VADs in Japan. However, a disadvantage is that, in Japan, their use is restricted to hospitals, necessitating prolonged hospitalization, reducing the patients’ quality of life. According to the Japanese registry for Mechanically Assisted Circulatory Support, the survival rate does not differ significantly between patients with extracorporeal and implantable VADs. As in Europe and North America, extracorporeal VADs in Japan are commonly used as Bridge to Decision or Bridge to Recovery. Extracorporeal VADs are switched to implantable VADs as a Bridge-to-Bridge strategy after stabilization or when cardiac function recovery fails. They are also used as right ventricular assist devices (RVADs) in patients with right heart failure. A special characteristic of extracorporeal VADs in Japan is their frequent use as a Bridge to Candidacy. In Japan, indications for implantable VADs are restricted to patients registered for heart transplantation. Therefore, in patients who cannot be registered for transplantation because of transient renal dysfunction, etc., due to heart failure, extracorporeal VADs are used first, and then replaced by implantable VADs after transplant registry is done. Here, we describe the current status of extracorporeal VADs in Japan, focusing on the environmental backgrounds, along with a review of the relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pharmaceuticals and Medical Devices Agency. J-MACS information (updated 9 April 2014). http://www.info.pmda.go.jp/kyoten_kiki/track.html.

  2. Furuta S, Wanibuchi T, Ito T, Kyo S, Urushikubo K, Kaneko K, Koike K, Takeda M, Kano T, Ono T, Atsumi K, Fujimasa I, Imachi K, Miyake H, Takido N, Nakajima M. The first clinical experience of the circulatory assistance using the partial artificial heart. Jpn J Artif Organs. 1981;1:657–60.

    Google Scholar 

  3. Sato N, Mohri H, Sezai Y, Koyanagi H, Fujimasa I, Imachi K, Atsumi K, Nitta S, Miura M. Multi-institutional evaluation of the Tokyo University ventricular assist system. ASAIO Trans. 1990;36:M708–11.

    CAS  PubMed  Google Scholar 

  4. Japanese Association for Clinical ventricular assist systems. Registry 2012 (updated 9 April 2014). http://plaza.umin.ac.jp/~jacvas/VAS_registry2012.pdf.

  5. Takano H, Nakatani T, Taenaka Y, Kitoh Y, Hiramori K, Haze K, Itoh A, Fujita T, Manabe H. Treatment of acute profound heart failure by ventricular assist device. Jpn Circ J. 1992;56:100–10.

    Article  CAS  PubMed  Google Scholar 

  6. Takano H, Taenaka Y, Noda H, Kinoshita M, Yagura A, Tatsumi E, Sekii H, Sasaki E, Umezu M, Nakatani T, Kyo S, Omoto R, Akutsu T, Manabe H. Multi-institutional studies of the National Cardiovascular Center ventricular assist system: use in 92 patients. ASAIO Trans. 1989;35:541–4.

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi K, Matsuda T, Takani H, Umezu M, Taenaka Y, Nakamura T. Effects of implantation on the mechanical properties of the polyurethane diaphragm of left ventricular assist devices. Biomaterials. 1985;6:82–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kimura M, Nishimura T, Kinoshita O, Kashiwa K, Kyo S, Ono M. Hemodynamic influence of tilting disc valve type on pump performance with the NIPRO: ventricular assist device. J Artif Organs. 2012;15:134–9.

    Article  PubMed  Google Scholar 

  9. Kashiwa K, Nishimura T, Nakahara A, Momose N, Umeda C, Kubo H, Takami H, Kinugawa K, Adachi H, Yamaguchi A, Yambe T, Katogi T, Kyo S, Ono M. Survey of blood pump diaphragm damage in the NIPRO: ventricular assist device. J Artif Organs. 2012;15:341–6.

    Article  PubMed  Google Scholar 

  10. Ono M, Nishimura T, Kinoshita O, Shiga T, Kinugawa K, Nagai R, Kyo S. Improved survival in patients with continuous-flow ventricular assist device for bridge to heart transplantation. Transplant Proc. 2013;45:2017–8.

    Article  CAS  PubMed  Google Scholar 

  11. Saito S, Matsumiya G, Sakaguchi T, Fujita T, Kuratani T, Ichikawa H, Sawa Y. Fifteen-year experience with Toyobo paracorporeal left ventricular assist system. J Artif Organs. 2009;12:27–34.

    Article  PubMed  Google Scholar 

  12. Sasaoka T, Kato TS, Komamura K, Takahashi A, Nakajima I, Oda N, Hanatani A, Mano A, Asakura M, Hashimura K, Niwaya K, Funatsu T, Kobayashi J, Kitamura S, Shishido T, Wada K, Miyata S, Nakatani T, Isobe M, Kitakaze M. Improved long-term performance of pulsatile extracorporeal left ventricular assist device. J Cardiol. 2010;56:220–8.

    Article  PubMed  Google Scholar 

  13. Pharmaceuticals and Medical Devices Agency. J-MACS Statistical Report (updated April 9, 2014). http://www.info.pmda.go.jp/kyoten_kiki/file/J-MACS_Statistical_Report201309.pdf.

  14. Morgan JA, Stewart AS, Lee BJ, Oz MC, Naka Y. Role of the Abiomed BVS 5000 device for short-term support and bridge to transplantation. ASAIO J. 2004;50:360–3.

    PubMed  Google Scholar 

  15. Worku B, Naka Y, Pak SW, Cheema FH, Siddiqui OT, Jain J, Uriel N, Bhatt R, Colombo P, Jorde U, Takayama H. Predictors of mortality after short-term ventricular assist device placement. Ann Thorac Surg. 2011;92:1608–13.

    Article  PubMed  Google Scholar 

  16. Samuels LE, Holmes EC, Garwood P, Ferdinand F. Initial experience with the Abiomed AB5000 ventricular assist device system. Ann Thorac Surg. 2005;80:309–12.

    Article  PubMed  Google Scholar 

  17. Zhang L, Kapetanakis EI, Cooke RH, Sweet LC, Boyce SW. Bi-ventricular circulatory support with the Abiomed AB5000 System in a patient with idiopathic refractory ventricular fibrillation. Ann Thorac Surg. 2007;83:298–300.

    Article  PubMed  Google Scholar 

  18. Conradi L, Schirmer J, Reiter B, Treede H, Kubik M, Reichenspurner HC, Wagner FM. First successful use of the new AB5000 protable circulatory support console as bridge to recovery in a case of dilated cardiomyopathy. Int J Artif Organs. 2010;33:824–7.

    PubMed  Google Scholar 

  19. Anderson M, Smedira N, Samuels L, Madani M, Naka Y, Acker M, Hout M, Benali K. Use of the AB5000™ ventricular assist device in cardiogenic shock after acute myocardial infarction. Ann Thorac Surg. 2010;90:706–12.

    Article  PubMed  Google Scholar 

  20. Slaughter MS, Sobieski MA, Martin M, Dia M, Silver MA. Home discharge experience with the Thoratec TLC-II portable driver. ASAIO J. 2007;53:132–5.

    Article  PubMed  Google Scholar 

  21. Birks EJ, Tansley PD, Yacoub MH, Bowles CT, Hipkin M, Hardy J, Banner NR, Khaghani A. Incidence and clinical management of life-threatening left ventricular assist device failure. J Heart Lung Transplant. 2004;23:964–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hetzer R, Potapov EV, Alexi-Meskishvili V, Weng Y, Miera O, Berger F, Hennig E, Hübler M. Single-center experience with treatment of cardiogenic shock in children by pediatric ventricular assist devices. J Thorac Cardiovasc Surg. 2011;141:616–23.

    Article  PubMed  Google Scholar 

  23. Fraser CD Jr, Jaquiss RD, Rosenthal DN, Humpl T, Canter CE, Blackstone EH, Naftel DC, Ichord RN, Bomgaars L, Tweddell JS, Massicotte MP, Turrentine MW, Cohen GA, Devaney EJ, Pearce FB, Carberry KE, Kroslowitz R, Almond CS, Berlin Heart Study Investigators. Prospective trial of a pediatric ventricular assist device. N Engl J Med. 2012;367:532–41.

    Article  CAS  PubMed  Google Scholar 

  24. Ziemba EA, John R. Mechanical circulatory support for bridge to decision: which device and when to decide. J Card Surg. 2010;25:425–33.

    Article  PubMed  Google Scholar 

  25. Loforte A, Montalto A, Ranocchi F, Della Monica PL, Casali G, Lappa A, Contento C, Musumeci F. Levitronix CentriMag third-generation magnetically levitated continuous flow pump as bridge to solution. ASAIO J. 2011;57:247–53.

    Article  PubMed  Google Scholar 

  26. Mohite PN, Zych B, Popov AF, Sabashnikov A, Sáez DG, Patil NP, Amrani M, Bahrami T, DeRobertis F, Maunz O, Marczin N, Banner NR, Simon AR. CentriMag short-term ventricular assist as a bridge to solution in patients with advanced heart failure: use beyond 30 days. Eur J Cardiothorac Surg. 2013;44:e310–5.

    Article  PubMed  Google Scholar 

  27. Borisenko O, Wylie G, Payne J, Bjessmo S, Smith J, Firmin R, Yonan N. The cost impact of short-term ventricular assist devices and extracorporeal life support systems therapies on the National Health Service in the UK. Interact Cardiovasc Thorac Surg. 2014;. doi:10.1093/icvts/ivu078.

    PubMed  Google Scholar 

  28. Takayama H, Chen JM, Jorde UP, Naka Y. Implantation technique of the CentriMag biventricular assist device allowing ambulatory rehabilitation. Interact Cardiovasc Thorac Surg. 2011;12:110–1.

    Article  PubMed  Google Scholar 

  29. Kashiwa K, Nishimura T, Saito A, et al. Left heart bypass support with the Rotaflow Centrifugal Pump® as a bridge to decision and recovery in an adult. J Artif Organs. 2012;25:207–10.

    Article  Google Scholar 

  30. Inoue T, Nishimura T, Murakami A, Itatani K, Takaoka T, Kitahori K, Umeki A, Takezoe T, Kashiwa K, Kyo S, Ono M. Left ventricular assist device support with a centrifugal pump for 2 months in a 5-kg child. J Artif Organs. 2011;14:253–6.

    Article  PubMed  Google Scholar 

  31. Khaliel F, Habeeb WA, Saad E, Kjellman U. Use of Rotaflow pump for left ventricular assist device bridging for 15 weeks. Asian Cardiovasc Thorac Ann. 2014;22:205–7.

    Article  PubMed  Google Scholar 

  32. Khani-Hanjani A, Loor G, Chamogeorgakis T, Shafii A, Mountis M, Hanna M, Soltesz E, Gonzalez-Stawinski GV. Case series using the ROTAFLOW system as a temporary right ventricular assist device after HeartMate II implantation. ASAIO J. 2013;59:456–60.

    Article  PubMed  Google Scholar 

  33. Haneya A, Philipp A, Puehler T, Rupprecht L, Kobuch R, Hilker M, Schmid C, Hirt SW. Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation. Eur J Cardiothorac Surg. 2012;41:219–23.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Inoue T, Kitamura T, Torii S, Hanayama N, Oka N, Itatani K, Tomoyasu T, Irisawa Y, Shibata M, Hayashi H, Ono M, Miyaji K. Five-week use of a monopivot centrifugal blood pump as a right ventricular assist device in severe dilated cardiomyopathy. J Artif Organs. 2014;17:95–8.

    Article  PubMed  Google Scholar 

  35. Idelchik GM, Simpson L, Civitello AB, Loyalka P, Gregoric ID, Delgado R 3rd, Kar B. Use of the percutaneous left ventricular assist device in patients with severe refractory cardiogenic shock as a bridge to long-term left ventricular assist device implantation. J Heart Lung Transplant. 2008;27:106–11.

    Article  PubMed  Google Scholar 

  36. Chamogeorgakis T, Rafael A, Shafii AE, Nagpal D, Pokersnik JA, Gonzalez-Stawinski GV. Which is better: a miniaturized percutaneous ventricular assist device or extracorporeal membrane oxygenation for patients with cardiogenic shock? ASAIO J. 2013;59:607–11.

    Article  PubMed  Google Scholar 

  37. Biefer HR, Sündermann SH, Emmert MY, Hasenclever P, Lachat ML, Falk V, Wilhelm MJ. Experience with a “Hotline” Service for outpatients on a ventricular assist device. Thorac Cardiovasc Surg. 2013;. doi:10.1055/s-0033-1351352.

    PubMed  Google Scholar 

  38. Nishimura T, Kyo S, Sato T, Sekiguchi A. Out of hospital program for the patient with an extracorporeal ventricular assist device. Clin Eng. 2008;19:623–7.

    Google Scholar 

  39. Gon S, Suematsu Y, Morizumi S, Shimizu T. Experience of a patient with an extracorporeal ventricular assist system who participated in a sleepover program. J Artif Organs. 2011;14:257–60.

    Article  PubMed  Google Scholar 

  40. Kawata M, Nishimura T, Hoshino Y, et al. Negative pressure wound therapy for left ventricular assist device-related mediastinitis: two case reports. J Artif Organs. 2011;14:159–62.

    Article  PubMed  Google Scholar 

  41. Kimura M, Nishimura T, Kinoshita O, Okada S, Inafuku H, Kyo S, Ono M. Successful treatment of pump pocket infection after left ventricular assist device implantation by negative pressure wound therapy and omental transposition. Ann Thorac Cardiovasc Surg. 2013;. doi:10.5761/atcs.cr.12.02192.

    Google Scholar 

  42. Holman WL, Kirklin JK, Naftel DC, Kormos RL, Desvign-Nickens P, Camacho MT, Ascheim DD. Infection after implantation of pulsatile mechanical circulatory support devices. J Thorac Cardiovasc Surg. 2010;139:1632–6.

    Article  PubMed  Google Scholar 

  43. Inoue T, Nishimura T, Murakami A, Kinoshita O, Kyo S, Ono M. Four-year paracorporeal left ventricular assist device (LVAD) support for heart failure after Rastelli operation. J Artif Organs. 2013;16:501–3.

    Article  PubMed  Google Scholar 

  44. Masuoka A, Katogi T, Iwazaki M, Kobayashi T, Nishimura T, Kyo S. Bridge to transplantation with a Toyobo-NCVC left ventricular assist device in a 3-year-old girl. Gen Thorac Cardiovasc Surg. 2008;56:357–60.

    Article  PubMed  Google Scholar 

  45. Matsumiya G, Saitoh S, Sakata Y, Sawa Y. Myocardial recovery by mechanical unloading with left ventricular assist system. Circ J. 2009;73:1386–92.

    Article  PubMed  Google Scholar 

  46. Müller J, Wallukat G, Weng YG, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Theodoridis V, Loebe M, Meyer R, Hetzer R. Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation. 1997;96:542–9.

    Article  PubMed  Google Scholar 

  47. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, Khaghani A, Yacoub MH. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355:1873–84.

    Article  CAS  PubMed  Google Scholar 

  48. Nishimura T, Kyo S. High-dose carvedilol therapy for mechanical circulatory assisted patients. J Artif Organs. 2010;13:88–91.

    Article  CAS  PubMed  Google Scholar 

  49. Nishimura T, Kyo S. Triple-site pacing: a new supported therapy approach for bridge to recovery with a left ventricular assist system in a patient with idiopathic dilated cardiomyopathy. J Artif Organs. 2010;13:54–7.

    Article  PubMed  Google Scholar 

  50. Matsumiya G, Monta O, Fukushima N, Sawa Y, Funatsu T, Toda K, Matsuda H. Who would be a candidate for bridge to recovery during prolonged mechanical left ventricular support in idiopathic dilated cardiomyopathy? J Thorac Cardiovasc Surg. 2005;130:699–704.

    Article  PubMed  Google Scholar 

  51. Imamura T, Kinugawa K, Hatano M, Fujino T, Muraoka H, Inaba T, Maki H, Kagami Y, Endo M, Kinoshita O, Nawata K, Kyo S, Ono M. Preoperative beta-blocker treatment is a key for deciding left ventricular assist device implantation strategy as a bridge to recovery. J Artif Organs. 2014;17:23–32.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshioka D, Sakaguchi T, Saito S, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, Ueno T, Kuratani T, Sawa Y. Initial experience of conversion of Toyobo paracorporeal left ventricular assist device to DuraHeart left ventricular assist device. Circ J. 2011;76:372–6.

    Article  PubMed  Google Scholar 

  53. Riebandt J, Haberl T, Mahr S, Laufer G, Rajek A, Steinlechner B, Schima H, Zimpfer D. Preoperative patient optimization using extracorporeal life support improves outcomes of INTERMACS level I patients receiving a permanent ventricular assist device. Eur J Cardiothorac Surg. 2014;. doi:10.1093/ejcts/ezu093.

    Google Scholar 

  54. Takayama H, Truby L, Koekort M, Uriel N, Colombo P, Mancini DM, Jorde UP, Naka Y. Clinical outcome of mechanical circulatory support for refractory cardiogenic shock in the current era. J Heart Lung Transplant. 2013;32:106–11.

    Article  PubMed  Google Scholar 

  55. Shiga T, Kinugawa K, Imamura T, Kato N, Endo M, Inaba T, Maki H, Hatano M, Yao A, Nishimura T, Hirata Y, Kyo S, Ono M, Nagai R. Combination evaluation of preoperative risk indices predicts requirement of biventricular assist device. Circ J. 2012;76:2785–91.

    Article  PubMed  Google Scholar 

  56. Saito S, Sakaguchi T, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, Daimon T, Sawa Y. Recovery of right heart function with temporary right ventricular assist using a centrifugal pump in patients with severe biventricular failure. J Heart Lung Transplant. 2012;31:858–64.

    Article  PubMed  Google Scholar 

  57. Loforte A, Stepanenko A, Potapov EV, Musumeci F, Dranishnikov N, Schweiger M, Montalto A, Pasic M, Weng Y, Dandel M, Siniawski H, Kukucka M, Krabatsch T, Hetzer R. Temporary right ventricular mechanical support in high-risk left ventricular assist device recipients versus permanent biventricular or total artificial heart support. Artif Organs. 2013;37:523–30.

    Article  PubMed  Google Scholar 

  58. Lazar JF, Swartz MF, Schiralli MP, Schneider M, Pisula B, Hallinan W, Hicks GL Jr, Massey HT. Survival after left ventricular assist device with and without temporary right ventricular support. Ann Thorac Surg. 2013;96:2155–9.

    Article  PubMed  Google Scholar 

  59. Saito S, Sakaguchi T, Sawa Y. Clinical report of long-term support with dual Jarvik 2000 biventricular assist device. J Heart Lung Transplant. 2011;30:845–7.

    Article  PubMed  Google Scholar 

  60. Komagamine M, Nishinaka T, Iwata Y, Tsukui Y, Saito S, Yamazaki K. Clinical outcomes of pediatric ventricular assist device implantation: a single-institute report from Japan. Int J Artif Organs. 2013;36:887–91.

    PubMed  Google Scholar 

  61. Imamura T, Kinugawa K, Shiga T, Endo M, Kato N, Inaba T, Maki H, Hatano M, Yao A, Nishimura T, Hirata Y, Kyo S, Ono M, Nagai R. Novel risk scoring system with preoperative objective parameters gives a good prediction of 1-year mortality in patients with a left ventricular assist device. Circ J. 2012;76:1895–903.

    Article  PubMed  Google Scholar 

  62. Shiga T, Kinugawa K, Hatano M, Yao A, Nishimura T, Endo M, Kato N, Hirata Y, Kyo S, Ono M, Nagai R. Age and preoperative total bilirubin level can stratify prognosis after extracorporeal pulsatile left ventricular assist device implantation. Circ J. 2011;75:121–8.

    Article  CAS  PubMed  Google Scholar 

  63. Imamura T, Kinugawa K, Shiga T, Kato N, Endo M, Inaba T, Maki H, Hatano M, Yao A, Hirata Y, Akahane M, Nishimura T, Kyo S, Ono M, Nagai R. How to demonstrate the reversibility of end-organ function before implantation of left ventricular assist device in INTERMACS profile 2 patients? J Artif Organs. 2012;15:395–8.

    Article  PubMed  Google Scholar 

  64. Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, Klodell CT Jr, Boyle AJ, John R, Chen L, Massey HT, Farrar DJ, Conte JV, HeartMate II Clinical Investigators. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120:2352–7.

    Article  PubMed  Google Scholar 

  65. Teuteberg JJ, Stewart GC, Jessup M, Kormos RL, Sun B, Frazier OH, Naftel DC, Stevenson LW. Implant strategies change over time and impact outcomes: insights from the INTERMACS (interagency registry for mechanically assisted circulatory support. JACC Heart Fail. 2013;1:369–78.

    Article  PubMed  Google Scholar 

  66. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, Timothy Baldwin J, Young JB. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141–56.

    Article  PubMed  Google Scholar 

  67. Grady KL, Naftel D, Stevenson L, Dew MA, Weidner G, Pagani FD, Kirklin JK, Myers S, Baldwin T, Young J. Overall quality of life improves to similar levels after mechanical circulatory support regardless of severity of heart failure before implantation. J Heart Lung Transplant. 2014;33:412–21.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nishimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimura, T. Current status of extracorporeal ventricular assist devices in Japan. J Artif Organs 17, 211–219 (2014). https://doi.org/10.1007/s10047-014-0779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-014-0779-8

Keywords

Navigation