Skip to main content
Log in

Propofol exerts hippocampal neuron protective effects via up-regulation of metallothionein-3

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Propofol is an intravenous anesthetic with neuroprotective effects against cerebral ischemia or hypoxia injury. However, the underlying mechanisms remain obscure. Recent years emerging evidence has demonstrated that metallothionein-3 (MT-3), a growth inhibitory factor that exists mainly in the central nervous system, exhibited neuroprotective effect in vivo. Here, we used a model of hypoxia/re-oxygenation (H/R) injury to examine the hippocampal neuroprotective effect of propofol, and explored the role of MT-3 in this action. H/R resulted in reduced cell viability and increased cell death in hippocampal neuron culture, as indicated by MTT assay and lactate dehydrogenase (LDH) release assay, respectively. Pretreatment of propofol at different concentrations (50, 150, and 250 μmol/L) reversed H/R-induced neurotoxicity and increased MT-3 mRNA and protein expressions. Moreover, propofol failed to exert neuroprotective effect when MT-3 was silenced by the transfection with the specific siRNA, suggesting that MT-3 was the crucial mediator for propofol’s neuroprotective effect against H/R. In conclusion, our findings showed that propofol is neuroprotective in H/R model on hippocampal neuron cells and that it may act by up-regulation of MT-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acquaviva R, Campisi A, Murabito P, Raciti G, Avola R, Mangiameli S, Musumeci I, Barcellona ML, Vanella A, Li Volti G (2004) Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: an alternative protective mechanism. Anesthesiology 101:1363–1371

    Article  PubMed  CAS  Google Scholar 

  2. Adembri C, Venturi L, Tani A, Chiarugi A, Gramigni E, Cozzi A, Pancani T, De Gaudio RA, Pellegrini-Giampietro DE (2006) Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 104:80–89

    Article  PubMed  CAS  Google Scholar 

  3. Chen M, Sun HY, Li SJ, Das M, Kong JM, Gao TM (2009) Nitric oxide as an upstream signal of p38 mediates hypoxia/reoxygenation-induced neuronal death. Neurosignals 17:162–168

    Article  PubMed  CAS  Google Scholar 

  4. Chen WQ, Cheng YY, Zhao XL, Li ST, Hou Y, Hong Y (2006) Effects of zinc on the induction of metallothionein isoforms in hippocampus in stress rats. Exp Biol Med (Maywood) 231:1564–1568

    CAS  Google Scholar 

  5. Cui Y, Ling-Shan G, Yi L, Xing-Qi W, Xue-Mei Z, Xiao-Xing Y (2011) Repeated administration of propofol upregulated the expression of c-Fos and cleaved-caspase-3 proteins in the developing mouse brain. Indian J Pharmacol 43:648–651

    PubMed  Google Scholar 

  6. Dai Z, Xiao J, Liu SY, Cui L, Hu GY, Jiang DJ (2008) Rutaecarpine inhibits hypoxia/reoxygenation-induced apoptosis in rat hippocampal neurons. Neuropharmacology 55:1307–1312

    Article  PubMed  CAS  Google Scholar 

  7. Dong J, Min S, Wei K, Li P, Cao J, Li Y (2010) Effects of electroconvulsive therapy and propofol on spatial memory and glutamatergic system in hippocampus of depressed rats. J ECT 26:126–130

    Article  PubMed  CAS  Google Scholar 

  8. Engelhard K, Werner C, Eberspacher E, Pape M, Stegemann U, Kellermann K, Hollweck R, Hutzler P, Kochs E (2004) Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation. Anesthesiology 101:912–917

    Article  PubMed  CAS  Google Scholar 

  9. Gelb AW, Bayona NA, Wilson JX, Cechetto DF (2002) Propofol anesthesia compared to awake reduces infarct size in rats. Anesthesiology 96:1183–1190

    Article  PubMed  CAS  Google Scholar 

  10. Helal GK, Aleisa AM, Helal OK, Al-Rejaie SS, Al-Yahya AA, Al-Majed AA, Al-Shabanah OA (2009) Metallothionein induction reduces caspase-3 activity and TNFalpha levels with preservation of cognitive function and intact hippocampal neurons in carmustine-treated rats. Oxid Med Cell Longev 2:26–35

    Article  PubMed  Google Scholar 

  11. Hozumi I, Uchida Y, Watabe K, Sakamoto T, Inuzuka T (2006) Growth inhibitory factor (GIF) can protect from brain damage due to stab wounds in rat brain. Neurosci Lett 395:220–223

    Article  PubMed  CAS  Google Scholar 

  12. Iijima T, Mishima T, Akagawa K, Iwao Y (2006) Neuroprotective effect of propofol on necrosis and apoptosis following oxygen-glucose deprivation–relationship between mitochondrial membrane potential and mode of death. Brain Res 1099:25–32

    Article  PubMed  CAS  Google Scholar 

  13. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  PubMed  CAS  Google Scholar 

  14. Karahalil B, Yagar S, Bahadir G, Durak P, Sardas S (2005) Diazepam and propofol used as anesthetics during open-heart surgery do not cause chromosomal aberrations in peripheral blood lymphocytes. Mutat Res 581:181–186

    Article  PubMed  CAS  Google Scholar 

  15. Kidambi S, Yarmush J, Berdichevsky Y, Kamath S, Fong W, Schianodicola J (2010) Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Res Notes 3:201

    Article  PubMed  Google Scholar 

  16. Kim HG, Hwang YP, Han EH, Choi CY, Yeo CY, Kim JY, Lee KY, Jeong HG (2009) Metallothionein-III provides neuronal protection through activation of nuclear factor-kappaB via the TrkA/phosphatidylinositol-3 kinase/Akt signaling pathway. Toxicol Sci 112:435–449

    Article  PubMed  CAS  Google Scholar 

  17. Koumura A, Kakefuda K, Honda A, Ito Y, Tsuruma K, Shimazawa M, Uchida Y, Hozumi I, Satoh M, Inuzuka T, Hara H (2009) Metallothionein-3 deficient mice exhibit abnormalities of psychological behaviors. Neurosci Lett 467:11–14

    Article  PubMed  CAS  Google Scholar 

  18. Lasarzik I, Winkelheide U, Stallmann S, Orth C, Schneider A, Tresch A, Werner C, Engelhard K (2009) Assessment of postischemic neurogenesis in rats with cerebral ischemia and propofol anesthesia. Anesthesiology 110:529–537

    Article  PubMed  CAS  Google Scholar 

  19. Liu R, Wei XB, Zhang XM (2007) Effects of acetylpuerarin on hippocampal neurons and intracellular free calcium subjected to oxygen-glucose deprivation/reperfusion in primary culture. Brain Res 1147:95–104

    Article  PubMed  CAS  Google Scholar 

  20. Luo J, Min S, Wei K, Li P, Dong J, Liu YF (2011) Propofol protects against impairment of learning-memory and imbalance of hippocampal Glu/GABA induced by electroconvulsive shock in depressed rats. J Anesth 25:657–665

    Article  PubMed  Google Scholar 

  21. Ma F, Wang H, Chen B, Wang F, Xu H (2011) Metallothionein 3 attenuated the apoptosis of neurons in the CA1 region of the hippocampus in the senescence-accelerated mouse/PRONE8 (SAMP8). Arq Neuropsiquiatr 69:105–111

    Article  PubMed  Google Scholar 

  22. Smith E, Drew PA, Tian ZQ, De Young NJ, Liu JF, Mayne GC, Ruszkiewicz AR, Watson DI, Jamieson GG (2005) Metallothionien 3 expression is frequently down-regulated in oesophageal squamous cell carcinoma by DNA methylation. Mol Cancer 4:42

    Article  PubMed  Google Scholar 

  23. Tanji K, Irie Y, Uchida Y, Mori F, Satoh K, Mizushima Y, Wakabayashi K (2003) Expression of metallothionein-III induced by hypoxia attenuates hypoxia-induced cell death in vitro. Brain Res 976:125–129

    Article  PubMed  CAS  Google Scholar 

  24. Vasileiou I, Xanthos T, Koudouna E, Perrea D, Klonaris C, Katsargyris A, Papadimitriou L (2009) Propofol: a review of its non-anaesthetic effects. Eur J Pharmacol 605:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Velly LJ, Guillet BA, Masmejean FM, Nieoullon AL, Bruder NJ, Gouin FM, Pisano PM (2003) Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiology 99:368–375

    Article  PubMed  CAS  Google Scholar 

  26. Wang B, Wood IS, Trayhurn P (2008) PCR arrays identify metallothionein-3 as a highly hypoxia-inducible gene in human adipocytes. Biochem Biophys Res Commun 368:88–93

    Article  PubMed  CAS  Google Scholar 

  27. Wang H, Luo M, Li C, Wang G (2011) Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem 119:210–219

    Article  PubMed  CAS  Google Scholar 

  28. Xi HJ, Zhang TH, Tao T, Song CY, Lu SJ, Cui XG, Yue ZY (2011) Propofol improved neurobehavioral outcome of cerebral ischemia-reperfusion rats by regulating Bcl-2 and Bax expression. Brain Res 1410:24–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Medical Science and Technology Planning Project of Ningbo City (#2010A03).

Conflict of interest

The authors of this manuscript have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changshun Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Huang, C., Jiang, J. et al. Propofol exerts hippocampal neuron protective effects via up-regulation of metallothionein-3. Neurol Sci 34, 165–171 (2013). https://doi.org/10.1007/s10072-012-0978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-0978-0

Keywords

Navigation