Skip to main content

Advertisement

Log in

Rethinking on the concept of biomarkers in preclinical Alzheimer’s disease

  • Review
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The neuropathological processes eventually leading to Alzheimer’s disease (AD) are thought to start decades before the appearance of clinical symptoms and the clinical diagnosis of AD dementia. The term “preclinical AD” has been recently introduced to identify this “silent stage” of AD, when the disease is already present, but symptoms are not yet clinically evident. Advances in AD biomarkers have dramatically improved the ability to detect AD pathological processes in vivo in cognitively intact subjects, thus demonstrating the presence of AD pathology in the preclinical phase. This review focuses on the recent advances in the field of neuroimaging and CSF AD biomarkers specifically in the preclinical phase of AD, and aims to discuss the significance that such biomarkers could have in cognitively intact subjects. Even though the use of such biomarkers in AD preclinical phase has contributed to improve our understanding of AD early pathological processes, it raised also a number of new challenges that still remain to be overcome, such as a better definition of the clinical and individual significance of currently known biomarkers in preclinical stages and the development of novel biomarkers of different early AD-related events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7:280–292. doi:10.1016/j.jalz.2011.03.003

    Article  Google Scholar 

  2. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. NBA 18:351–357

    CAS  Google Scholar 

  3. Jack CR Jr, Knopman DS, Weigand SD et al (2012) An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol 71:765–775. doi:10.1002/ana.22628

    Article  PubMed  PubMed Central  Google Scholar 

  4. Salmon DP, Ferris SH, Thomas RG et al (2013) Age and apolipoprotein E genotype influence rate of cognitive decline in nondemented elderly. Neuropsychology 27:391–401. doi:10.1037/a0032707

    Article  PubMed  Google Scholar 

  5. Blennow K (2010) Biomarkers in Alzheimer’s disease drug development. Nat Med 16:1218–1222. doi:10.1038/nm.2221

    Article  CAS  PubMed  Google Scholar 

  6. Knopman DS, Jack CR, Wiste HJ et al (2012) Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology 78:1576–1582. doi:10.1212/WNL.0b013e3182563bbe

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Group BDW (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95. doi:10.1067/mcp.2001.113989

    Article  Google Scholar 

  8. Pupi A, Mosconi L, Nobili FM, Sorbi S (2005) Toward the validation of functional neuroimaging as a potential biomarker for Alzheimer’s disease: implications for drug development. Mol Imaging Biol 7:59–68. doi:10.1007/s11307-005-0953-8

    Article  PubMed  Google Scholar 

  9. Hampel H, Lista S (2013) Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement. J Nutr Health Aging 17:54–63. doi:10.1007/s12603-013-0003-1

    Article  CAS  PubMed  Google Scholar 

  10. Vellas B, Carrillo MC, Sampaio C et al (2013) Designing drug trials for Alzheimer’s disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. In: Alzheimers Dement. pp 438–444

  11. Parekh A, Buckman-Garner S, McCune S et al (2015) Catalyzing the Critical Path Initiative: fDA’s progress in drug development activities. Clin Pharmacol Ther 97:221–233. doi:10.1002/cpt.42

    Article  CAS  PubMed  Google Scholar 

  12. Jack CR, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216. doi:10.1016/S1474-4422(12)70291-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mattsson N, Zetterberg H, Hansson O et al (2009) CSF biomarkers and incipient alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393. doi:10.1001/jama.2009.1064

    Article  CAS  PubMed  Google Scholar 

  14. Klunk WE, Engler H, Nordberg A, Wang Y (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B—Klunk—2004—Annals of Neurology—Wiley Online Library. Annals of …

  15. Jagust WJ, Bandy D, Chen K et al (2010) The Alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimers Dement 6:221–229. doi:10.1016/j.jalz.2010.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dickerson BC, Wolk DA, Alzheimer’s Disease Neuroimaging Initiative (2012) MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults. Neurology 78:84–90. doi:10.1212/WNL.0b013e31823efc6c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alzheimer’s Association (2015) Alzheimer’s disease facts and figures. Alzheimers Dement 11:332–384

    Article  Google Scholar 

  18. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68:270–281. doi:10.1016/j.neuron.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  19. Gee JR, Keller JN (2005) Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol 37:1145–1150. doi:10.1016/j.biocel.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  20. Farrer LA, Cupples LA, Haines JL et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease meta analysis Consortium. JAMA 278:1349–1356

    Article  CAS  PubMed  Google Scholar 

  21. Mosconi L, Berti V, Swerdlow RH et al (2010) Maternal transmission of Alzheimer’s disease: prodromal metabolic phenotype and the search for genes. Hum Genomics 4:170–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gómez-Tortosa E, Barquero MS, Barón M et al (2007) Variability of age at onset in siblings with familial Alzheimer disease. Arch Neurol 64:1743–1748. doi:10.1001/archneur.64.12.1743

    Article  PubMed  Google Scholar 

  23. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    Article  CAS  PubMed  Google Scholar 

  24. Sperling RA, Johnson KA (2013) Biomarkers of Alzheimer disease: current and future applications to diagnostic criteria. Continuum 19:325–338

    PubMed  Google Scholar 

  25. Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028. doi:10.1016/j.neuropsychologia.2009.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ewers M, Insel PS, Stern Y et al (2013) Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease. Neurology 80:1194–1201. doi:10.1212/WNL.0b013e31828970c2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castellani RJ, Perry G (2014) The complexities of the pathology–pathogenesis relationship in Alzheimer disease. Biochem Pharmacol 88:671–676. doi:10.1016/j.bcp.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  28. Vlassenko AG, Mintun MA, Xiong C et al (2011) Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C] Pittsburgh compound B data. Ann Neurol 70:857–861. doi:10.1002/ana.22608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kundaikar HS, Degani MS (2015) Insights into the interaction mechanism of ligands with Aβ42 based on molecular dynamics simulations and mechanics: implications of role of common binding site in drug design for Alzheimer’s disease. Chem Biol Drug Des. doi:10.1111/cbdd.12555

    PubMed  Google Scholar 

  30. Vallabhajosula S (2011) Positron emission tomography radiopharmaceuticals for imaging brain beta-amyloid. Semin Nucl Med 41:283–299. doi:10.1053/j.semnuclmed.2011.02.005

    Article  PubMed  Google Scholar 

  31. Shoghi-Jadid K, Small GW, Agdeppa ED et al (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with alzheimer disease. Am J Geriatr Psychiatry 10:24–35. doi:10.1097/00019442-200201000-00004

    Article  PubMed  Google Scholar 

  32. Rowe CC, Ackerman U, Browne W et al (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135. doi:10.1016/S1474-4422(08)70001-2

    Article  CAS  PubMed  Google Scholar 

  33. Koole M, Lewis DM, Buckley C et al (2009) Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med 50:818–822. doi:10.2967/jnumed.108.060756

    Article  CAS  PubMed  Google Scholar 

  34. Kung HF, Choi SR, Qu W et al (2010) 18F stilbenes and styrylpyridines for PET imaging of A beta plaques in Alzheimer’s disease: a miniperspective. J Med Chem 53:933–941. doi:10.1021/jm901039z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sabri O, Seibyl J, Rowe C, Barthel H (2015) Beta-amyloid imaging with florbetaben. Clin Transl Imaging 3:13–26. doi:10.1007/s40336-015-0102-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mintun MA, Larossa GN, Sheline YI et al (2006) [11C] PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67:446–452. doi:10.1212/01.wnl.0000228230.26044.a4

    Article  CAS  PubMed  Google Scholar 

  37. Aizenstein HJ, Nebes RD, Saxton JA et al (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517. doi:10.1001/archneur.65.11.1509

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rowe CC, Ellis KA, Rimajova M et al (2010) Amyloid imaging results from the Australian imaging, biomarkers and lifestyle (AIBL) study of aging. Neurobiol Aging 31:1275–1283. doi:10.1016/j.neurobiolaging.2010.04.007

    Article  PubMed  Google Scholar 

  39. Jagust WJ, Mormino EC (2011) Lifespan brain activity. Trends Cognit Sci 15:520–526. doi:10.1016/j.tics.2011.09.004

    Article  Google Scholar 

  40. Schott JM, Bartlett JW, Fox NC et al (2010) Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Aβ1-42. Ann Neurol 68:825–834. doi:10.1002/ana.22315

    Article  CAS  PubMed  Google Scholar 

  41. Resnick SM, Sojkova J, Zhou Y et al (2010) Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 74:807–815. doi:10.1212/WNL.0b013e3181d3e3e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chételat G, Villemagne VL, Pike KE et al (2011) Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer’s disease. Brain 134:798–807. doi:10.1093/brain/awq383

    Article  PubMed  Google Scholar 

  43. Villain N, Chételat G, Grassiot B et al (2012) Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB-PET longitudinal study. Brain 135:2126–2139. doi:10.1093/brain/aws125

    Article  PubMed  Google Scholar 

  44. Knight WD, Okello AA, Ryan NS et al (2011) Carbon-11-Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. Brain 134:293–300. doi:10.1093/brain/awq310

    Article  PubMed  Google Scholar 

  45. Villemagne VL, Ataka S, Mizuno T et al (2009) High striatal amyloid beta-peptide deposition across different autosomal Alzheimer disease mutation types. Arch Neurol 66:1537–1544. doi:10.1001/archneurol.2009.285

    PubMed  Google Scholar 

  46. Berti V, Nacmias B, Bagnoli S, Sorbi S (2011) Alzheimer’s disease: genetic basis and amyloid imaging as endophenotype. Q J Nucl Med Mol Imaging 55:225–236

    CAS  PubMed  Google Scholar 

  47. Reiman EM, Chen K, Liu X et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci 106:6820–6825. doi:10.1073/pnas.0900345106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fleisher AS, Chen K, Liu X et al (2013) Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging 34:1–12. doi:10.1016/j.neurobiolaging.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  49. Mosconi L, Rinne JO, Tsui WH et al (2010) Increased fibrillar amyloid-{beta} burden in normal individuals with a family history of late-onset Alzheimer’s. Proc Natl Acad Sci 107:5949–5954. doi:10.1073/pnas.0914141107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee H-G, Casadesus G, Zhu X et al (2004) Challenging the amyloid cascade hypothesis: senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. Ann NY Acad Sci 1019:1–4. doi:10.1196/annals.1297.001

    Article  CAS  PubMed  Google Scholar 

  51. Pimplikar SW, Nixon RA, Robakis NK et al (2010) Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 30:14946–14954. doi:10.1523/JNEUROSCI.4305-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Herrup K (2010) Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 30:16755–16762. doi:10.1523/JNEUROSCI.4521-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13. doi:10.1016/j.jalz.2011.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  54. Klunk WE, Koeppe RA, Price JC et al (2015) The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement 11(1–15):e1–e4. doi:10.1016/j.jalz.2014.07.003

    Article  PubMed  Google Scholar 

  55. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510. doi:10.1007/s00259-005-1762-7

    Article  CAS  PubMed  Google Scholar 

  56. Mosconi L, Mistur R, Switalski R et al (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36:811–822. doi:10.1007/s00259-008-1039-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mosconi L, De santi S, Li J et al (2008) Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 29:676–692. doi:10.1016/j.neurobiolaging.2006.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nacmias B, Berti V, Piaceri I, Sorbi S (2013) FDG PET and the genetics of dementia. Clin Transl Imaging 1:235–246. doi:10.1007/s40336-013-0028-9

    Article  Google Scholar 

  59. Mosconi L, Sorbi S, De Leon MJ et al (2006) Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med 47:1778–1786

    CAS  PubMed  Google Scholar 

  60. Jagust WJ, Landau SM, For the Alzheimer’s Disease Neuroimaging Initiative (2012) Apolipoprotein E, not fibrillar—amyloid, reduces cerebral glucose metabolism in normal aging. J Neurosci 32:18227–18233. doi:10.1523/JNEUROSCI.3266-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mosconi L, Brys M, Switalski R et al (2007) Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc Natl Acad Sci 104:19067–19072. doi:10.1073/pnas.0705036104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stern Y, Alexander GE, Prohovnik I, Mayeux R (1992) Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer’s disease. Ann Neurol 32:371–375. doi:10.1002/ana.410320311

    Article  CAS  PubMed  Google Scholar 

  63. Berti V, Vanzi E, Polito C, Pupi A (2013) Back to the future: the absolute quantification of cerebral metabolic rate of glucose. Clin Transl Imaging 1:289–296. doi:10.1007/s40336-013-0030-2

    Article  Google Scholar 

  64. Herholz K (2014) The role of PET quantification in neurological imaging: fDG and amyloid imaging in dementia. Clin Transl Imaging 2:321–330. doi:10.1007/s40336-014-0073-z

    Article  Google Scholar 

  65. Dubois B, Feldman HH, Jacova C, et al. (2010) Revising the definition of Alzheimer’s disease: a new lexicon. In: Lancet Neurol. pp 1118–1127

  66. Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413. doi:10.1002/ana.21610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blennow K, Dubois B, Fagan AM et al (2015) Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement 11:58–69. doi:10.1016/j.jalz.2014.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  68. Buchhave P, Minthon L, Zetterberg H et al (2012) Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69:98–106. doi:10.1001/archgenpsychiatry.2011.155

    Article  CAS  PubMed  Google Scholar 

  69. Braak H, Zetterberg H, Del Tredici K, Blennow K (2013) Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol 126:631–641. doi:10.1007/s00401-013-1139-0

    Article  CAS  PubMed  Google Scholar 

  70. Tolboom N, van der Flier WM, Yaqub M et al (2009) Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J Nucl Med 50:1464–1470. doi:10.2967/jnumed.109.064360

    Article  CAS  PubMed  Google Scholar 

  71. Toledo JB, Bjerke M, Da X et al (2015) Nonlinear association between cerebrospinal fluid and florbetapir F-18 β-amyloid measures across the spectrum of alzheimer disease. JAMA Neurol 72:571–581. doi:10.1001/jamaneurol.2014.4829

    Article  PubMed  Google Scholar 

  72. Buerger K, Ewers M, Pirttilä T et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129:3035–3041. doi:10.1093/brain/awl269

    Article  PubMed  Google Scholar 

  73. Sämgård K, Zetterberg H, Blennow K et al (2010) Cerebrospinal fluid total tau as a marker of Alzheimer’s disease intensity. Int J Geriatr Psychiatry 25:403–410. doi:10.1002/gps.2353

    Article  PubMed  Google Scholar 

  74. Tarawneh R, Head D, Allison S et al (2015) Cerebrospinal fluid markers of neurodegeneration and rates of brain atrophy in early alzheimer disease. JAMA Neurol 72:656–665. doi:10.1001/jamaneurol.2015.0202

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jansen WJ, Ossenkoppele R, Knol DL et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313:1924–1938. doi:10.1001/jama.2015.4668

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ritchie C, Smailagic N, Noel-Storr AH et al (2014) Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 6:CD008782. doi:10.1002/14651858.CD008782.pub4

    PubMed  Google Scholar 

  77. Mattsson N, Insel PS, Donohue M et al (2015) Predicting reduction of cerebrospinal fluid β-amyloid 42 in cognitively healthy controls. JAMA Neurol 72:554–560. doi:10.1001/jamaneurol.2014.4530

    Article  PubMed  Google Scholar 

  78. Schoonenboom NSM, Reesink FE, Verwey NA et al (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78:47–54. doi:10.1212/WNL.0b013e31823ed0f0

    Article  CAS  PubMed  Google Scholar 

  79. Vos SJ, Xiong C, Visser PJ et al (2013) Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol 12:957–965. doi:10.1016/S1474-4422(13)70194-7

    Article  PubMed  PubMed Central  Google Scholar 

  80. Slaets S, Le Bastard N, Theuns J et al (2013) Amyloid pathology influences aβ1-42 cerebrospinal fluid levels in dementia with lewy bodies. J Alzheimers Dis 35:137–146. doi:10.3233/JAD-122176

    CAS  PubMed  Google Scholar 

  81. Koopman K, Le Bastard N, Martin J-J et al (2009) Improved discrimination of autopsy-confirmed Alzheimer’s disease (AD) from non-AD dementias using CSF P-tau(181P). Neurochem Int 55:214–218. doi:10.1016/j.neuint.2009.02.017

    Article  CAS  PubMed  Google Scholar 

  82. Mattsson N, Andreasson U, Persson S et al (2013) CSF biomarker variability in the Alzheimer’s Association quality control program. Alzheimers Dement 9:251–261. doi:10.1016/j.jalz.2013.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ferreira D, Rivero-Santana A, Perestelo-Pérez L et al (2014) Improving CSF biomarker’ performance for predicting progression from mild cognitive impairment to Alzheimer’s disease by considering different confounding factors: a meta-analysis. Front Aging Neurosci 6:287. doi:10.3389/fnagi.2014.00287

    PubMed  PubMed Central  Google Scholar 

  84. Yang Y, Cui M (2014) Radiolabeled bioactive benzoheterocycles for imaging β-amyloid plaques in Alzheimer’s disease. Eur J Med Chem 87:703–721. doi:10.1016/j.ejmech.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  85. Okamura N, Harada R, Furumoto S et al (2014) Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 14:500. doi:10.1007/s11910-014-0500-6

    Article  PubMed  Google Scholar 

  86. Harada R, Okamura N, Furumoto S, et al. (2015) 18F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer’s Disease. J Nucl Med Nov 5. pii: jnumed.115.164848. [Epub ahead of print]

  87. Castellani RJ, Perry G (2014) The complexities of the pathology–pathogenesis relationship in Alzheimer disease. Biochem Pharmacol 88:671–676. doi:10.1016/j.bcp.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  88. Janssen B, Vugts DJ, Funke U et al (2015) Imaging of neuroinflammation in Alzheimer’s disease, multiple sclerosis and stroke: recent developments in positron emission tomography. Biochim Biophys Acta. doi:10.1016/j.bbadis.2015.11.011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Berti.

Ethics declarations

Conflict of interest

All Authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, V., Polito, C., Lombardi, G. et al. Rethinking on the concept of biomarkers in preclinical Alzheimer’s disease. Neurol Sci 37, 663–672 (2016). https://doi.org/10.1007/s10072-016-2477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2477-1

Keywords

Navigation