Skip to main content

Advertisement

Log in

Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland

  • Original article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We investigated cell response, including cell proliferation and expression of heat stress protein and bcl-2, to clarify the influence of low-level [gallium-aluminum-arsenide (Ga-Al-As) diode] laser irradiation on Par-C10 cells derived from the acinar cells of rat parotid glands. Furthermore, we also investigated amylase release and cell death from irradiation in acinar cells from rat parotid glands. The number of Par-C10 cells in the laser-irradiated groups was higher than that in the non-irradiated group at days 5 and 7, and the difference was statistically significant (P < 0.01). Greater expression of heat shock protein (HSP)25 and bcl-2 was seen on days 1 and 3 in the irradiated group. Assay of the released amylase showed no significant difference statistically between the irradiated group and the non-irradiated group. Trypan blue exclusion assay revealed that there was no difference in the ratio of dead to live cells between the irradiated and the non-irradiated groups. These results suggest that low-level laser irradiation promotes cell proliferation and expression of anti-apoptosis proteins in Par-C10 cells, but it does not significantly affect amylase secretion and does not induce rapid cell death in isolated acinar cells from rat parotid glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mester E, Spiry T, Szende B, Tota JG (1971) Effect of laser rays on wound healing. Am J Surg 122:532–535

    Article  PubMed  CAS  Google Scholar 

  2. Schindl A, Heinze G, Schindl M, Pernerstorfer-Schon H, Schindl L (2002) Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res 64:240–246

    Article  PubMed  Google Scholar 

  3. Webb C, Dyson M (2003) The effect of 880 nm low level laser energy on human fibroblast cell numbers: a possible role in hypertrophic wound healing. J Photochem Photobiol B 70:39–44

    Article  PubMed  CAS  Google Scholar 

  4. Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39

    Article  PubMed  CAS  Google Scholar 

  5. Kana JS, Hutschenreiter G, Haina D, Waidelich W (1981) Effect of low-power density laser radiation on healing of open skin wounds in rats. Arch Surg 116:293–296

    PubMed  CAS  Google Scholar 

  6. Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M (2000) Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 27:427–437

    Article  PubMed  CAS  Google Scholar 

  7. Anders JJ, Borke RC, Woolery SK, Van de Merwe WP (1993) Low power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 13:72–82

    Article  PubMed  CAS  Google Scholar 

  8. Amano A, Miyagi K, Azuma T, Ishihara Y, Katsube S, Aoyama I, Saito I (1994) Histological studies on the rheumatoid synovial membrane irradiated with a low energy laser. Lasers Surg Med 15:290–294

    Article  PubMed  CAS  Google Scholar 

  9. Plavnik LM, De Crosa ME, Malberti AI (2003) Effect of low-power radiation (helium/neon) upon submandibulary glands. J Clin Laser Med Surg 21:219–225

    Article  PubMed  Google Scholar 

  10. Samar ME, Avila RE, Juri HO, Plivelic TS, de Fabro SP (1995) Histopathological alternations induced by He-Ne laser in the salivary glands of the posthatched chicken. J Clin Laser Med Surg 13:267–272

    Google Scholar 

  11. Takahashi S, Domon T, Yamamoto T, Wakita M (1997) Regeneration of myoepithelial cells in rat submandibular glands after yttrium aluminium garnet laser irradiation. Int J Exp Pathol 78:91–99

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi S, Wakita M (1993) Regeneration of the intralobular duct and acinus in rat submandibular glands after YAG laser irradiation. Arch Histol Cytol 56:199–206

    Article  PubMed  CAS  Google Scholar 

  13. Takeda Y (1988) Irradiation effect of low-energy laser on rat submandibular salivary gland. J Oral Pathol 17:91–94

    Article  PubMed  CAS  Google Scholar 

  14. Quissell DO, Barzen KA, Redman RS, Camden JM, Turner JT (1998) Development and characterization of SV40 immortalized rat parotid acinar cell lines. In Vitro Cell Dev Biol Anim 34:58–67

    Article  PubMed  CAS  Google Scholar 

  15. Dohke Y, Fujita-Yoshigaki J, Sugiya H, Furuyama S, Hara-Yokoyama M (2002) Involvement of phospholipase D in the cAMP-regulated exocytosis of rat parotid acinar cells. Biochem Biophys Res Commun 299:663–668

    Article  PubMed  CAS  Google Scholar 

  16. Matsuzaka K, Miyake N, Takahashi K, Ohta K, Hattori M, Muramatsu T, Sato T, Oda Y, Shimono M, Ishikawa T (2004) Transformation of hydroxyapatite surface characteristics during diode laser irradiation. Biomed Res 25:105–108

    Article  CAS  Google Scholar 

  17. Matsuzaka K, Ohta K, Takahashi K, Miyake N, Hattori M, Muramatsu T, Sato T, Oda Y, Shimono M, Ishikawa T (2004) Effect of a diode laser on cell proliferation, alkaline phosphatase activity, and osteopontin mRNA expression in proliferating and in differentiating osteoblastic cells. Biomed Res 25:165–170

    Article  CAS  Google Scholar 

  18. Amano T, Muramatsu T, Amemiya K, Kubo K, Shimono M (2006) Responses of rat pulp cells to heat stress in vitro. J Dent Res 85:432–435

    Article  PubMed  CAS  Google Scholar 

  19. Bernfeld P (1955) Amylase alpha and beta. Methods Enzymol 1:149–158

    Article  CAS  Google Scholar 

  20. Fujita-Yoshigaki J, Tagashira A, Yoshigaki T, Furuyama S, Sugiya H (2005) A primary culture of parotid acinar cells retaining capacity for agonists-induced amylase secretion and generation of new secretory granules. Cell Tissue Res 320:455–464

    Article  PubMed  CAS  Google Scholar 

  21. Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol 187:73–80

    Article  PubMed  CAS  Google Scholar 

  22. Kreisler M, Christoffers AB, Willershausen B, d, Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30:353–358

    Article  PubMed  Google Scholar 

  23. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18:95–99

    Article  PubMed  Google Scholar 

  24. Leitz G, Fallman E, Tuck S, Axner O (2002) Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. Biophys J 82:2224–2231

    Article  PubMed  CAS  Google Scholar 

  25. Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265:12111–12114

    PubMed  CAS  Google Scholar 

  26. Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366

    Article  PubMed  CAS  Google Scholar 

  27. Mehlen P, Mehlen A, Godet J, Arrigo AP (1997) hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 272:31657–31665

    Article  PubMed  CAS  Google Scholar 

  28. Lavoie JN, Hickey E, Weber LA, Landry J (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210–24214

    PubMed  CAS  Google Scholar 

  29. Kitamura C, Ogawa Y, Nishihara T, Morotomi T, Terashita M (2003) Transient co-localization of c-Jun N-terminal kinase and c-Jun with heat shock protein 70 in pulp cells during apoptosis. J Dent Res 82:91–95

    Article  PubMed  CAS  Google Scholar 

  30. Miyata H, Genma T, Ohshima M, Yamaguchi Y, Hayashi M, Takeichi O, Ogiso B, Otsuka K (2006) Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of cultured human dental pulp cells by low-power gallium-aluminium-arsenic laser irradiation. Int Endod J 39:238–244

    Article  PubMed  CAS  Google Scholar 

  31. Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469

    PubMed  CAS  Google Scholar 

  32. Lu QL, Abel P, Foster CS, Lalani EN (1996) bcl-2: Role in epithelial differentiation and oncogenesis. Hum Pathol 27:102–110

    Article  PubMed  CAS  Google Scholar 

  33. Tate Y, Yoshiba K, Yoshiba N, Iwaku M, Okiji T, Ohshima H (2006) Odontoblast responses to GaAlAs laser irradiation in rat molars: an experimental study using heat-shock protein-25 immunohistochemistry. Eur J Oral Sci 114:50–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Hiroshi Sugiya (Department of Oral Physiology, Nihon University, School of Dentistry at Matsudo), for his helpful advice, and Associate Professor Jeremy Williams, Tokyo Dental College, for his assistance with the English of the manuscript. This work was supported by a grant from the Oral Health Science Center (HRC5A03) at Tokyo Dental College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Muramatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onizawa, K., Muramatsu, T., Matsuki, M. et al. Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland. Lasers Med Sci 24, 155–161 (2009). https://doi.org/10.1007/s10103-008-0541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0541-7

Keywords

Navigation