Skip to main content

Advertisement

Log in

Microtensile bond strength of composite resin to glass-infiltrated alumina composite conditioned with Er,Cr:YSGG laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 μm Al2O3), and conditioned with: (CG) tribochemical silica coating (110 μm SiO2) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 μm, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37°C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (α ≤0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75–96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Christensen GJ (1999) Porcelain-fused-to-metal vs. nonmetal crowns. J Am Dent Assoc 130(3):409–411

    PubMed  CAS  Google Scholar 

  2. Borges GA, Sophr AM, de Goes MF, Sobrinho LC, Chan DC (2003) Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent 89(5):479–488

    Article  PubMed  CAS  Google Scholar 

  3. Anusavice KJ (1996) Philips' science of dental materials, 10th edn. Saunders, Philadelphia

    Google Scholar 

  4. McLean JW, Hughes TH (1965) The reinforcement of dental porcelain with ceramic oxides. Br Dent J 119(6):251–267

    PubMed  CAS  Google Scholar 

  5. Gonzaga CC, Okada CY, Cesar PF, Miranda WG Jr, Yoshimura HN (2009) Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics. Dent Mater 25(11):1293–1301

    Article  PubMed  CAS  Google Scholar 

  6. Newburg R, Pameijer CH (1978) Composite resins bonded to porcelain with silane solution. J Am Dent Assoc 96(2):288–291

    PubMed  CAS  Google Scholar 

  7. da Silveira BL, Paglia A, Burnett LH, Shinkai RS, de Paula Eduardo C, Spohr AM (2005) Micro-tensile bond strength between a resin cement and an aluminous ceramic treated with Nd:YAG laser, Rocatec System, or aluminum oxide sandblasting. Photomed Laser Surg 23(6):543–548

    Article  PubMed  Google Scholar 

  8. Madani M, Chu FC, McDonald AV, Smales RJ (2000) Effects of surface treatments on shear bond strengths between a resin cement and an alumina core. J Prosthet Dent 83(6):644–647

    Article  PubMed  CAS  Google Scholar 

  9. Jivraj SA, Kim TH, Donovan TE (2006) Selection of luting agents, part 1. J Calif Dent Assoc 34(2):149–160

    PubMed  Google Scholar 

  10. Jivraj SA (2006) Material selection in restorative dentistry. J Calif Dent Assoc 34(2):115–116

    PubMed  Google Scholar 

  11. Della Bona A, Anusavice KJ, Shen C (2000) Microtensile strength of composite bonded to hot-pressed ceramics. J Adhes Dent 2(4):305–313

    PubMed  CAS  Google Scholar 

  12. Della Bona A, Anusavice KJ (2002) Microstructure, composition, and etching topography of dental ceramics. Int J Prosthodont 15(2):159–167

    PubMed  Google Scholar 

  13. Jedynakiewicz NM, Martin N (2001) The effect of surface coating on the bond strength of machinable ceramics. Biomaterials 22(7):749–752

    Article  PubMed  CAS  Google Scholar 

  14. Della Bona A, Anusavice KJ, Hood JA (2002) Effect of ceramic surface treatment on tensile bond strength to a resin cement. Int J Prosthodont 15(3):248–253

    PubMed  Google Scholar 

  15. Della Bona A, Shen C, Anusavice KJ (2004) Work of adhesion of resin on treated lithia disilicate-based ceramic. Dent Mater 20(4):338–344

    Article  PubMed  CAS  Google Scholar 

  16. Kern M, Thompson VP (1994) Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. J Prosthet Dent 71(5):453–461

    Article  PubMed  CAS  Google Scholar 

  17. Sorensen JA, Engelman MJ, Torres TJ, Avera SP (1991) Shear bond strength of composite resin to porcelain. Int J Prosthodont 4(1):17–23

    PubMed  CAS  Google Scholar 

  18. Sen D, Poyrazoglu E, Tuncelli B, Goller G (2000) Shear bond strength of resin luting cement to glass-infiltrated porous aluminum oxide cores. J Prosthet Dent 83(2):210–215

    Article  PubMed  CAS  Google Scholar 

  19. Ozcan M, Alkumru HN, Gemalmaz D (2001) The effect of surface treatment on the shear bond strength of luting cement to a glass-infiltrated alumina ceramic. Int J Prosthodont 14(4):335–339

    PubMed  CAS  Google Scholar 

  20. Derand P, Derand T (2000) Bond strength of luting cements to zirconium oxide ceramics. Int J Prosthodont 13(2):131–135

    PubMed  CAS  Google Scholar 

  21. Strub JR, Stiffler S, Scharer P (1988) Causes of failure following oral rehabilitation: biological versus technical factors. Quintessence Int 19(3):215–222

    PubMed  CAS  Google Scholar 

  22. Libby G, Arcuri MR, LaVelle WE, Hebl L (1997) Longevity of fixed partial dentures. J Prosthet Dent 78(2):127–131

    Article  PubMed  CAS  Google Scholar 

  23. Sorensen JA, Kang SK, Torres TJ, Knode H (1998) In-Ceram fixed partial dentures: three-year clinical trial results. J Calif Dent Assoc 26(3):207–214

    PubMed  CAS  Google Scholar 

  24. Kern M, Wegner SM (1998) Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater 14(1):64–71

    Article  PubMed  CAS  Google Scholar 

  25. Kiyan VH, Saraceni CH, da Silveira BL, Aranha AC, da Paula Eduardo C (2007) The influence of internal surface treatments on tensile bond strength for two ceramic systems. Oper Dent 32(5):457–465

    Article  PubMed  Google Scholar 

  26. Kern M, Strub JR (1998) Bonding to alumina ceramic in restorative dentistry: clinical results over up to 5 years. J Dent 26(3):245–249

    Article  PubMed  CAS  Google Scholar 

  27. Cozean C, Arcoria CJ, Pelagalli J, Powell GL (1997) Dentistry for the 21st century? Erbium:YAG laser for teeth. J Am Dent Assoc 128(8):1080–1087

    PubMed  CAS  Google Scholar 

  28. Eversole LR, Rizoiu I, Kimmel AI (1997) Pulpal response to cavity preparation by an erbium, chromium:YSGG laser-powered hydrokinetic system. J Am Dent Assoc 128(8):1099–1106

    PubMed  CAS  Google Scholar 

  29. Hossain M, Nakamura Y, Yamada Y, Kimura Y, Matsumoto N, Matsumoto K (1999) Effects of Er,Cr:YSGG laser irradiation in human enamel and dentin: ablation and morphological studies. J Clin Laser Med Surg 17(4):155–159

    PubMed  CAS  Google Scholar 

  30. Yu DG, Kimura Y, Kinoshita J, Matsumoto K (2000) Morphological and atomic analytical studies on enamel and dentin irradiated by an erbium, chromium:YSGG laser. J Clin Laser Med Surg 18(3):139–143

    PubMed  CAS  Google Scholar 

  31. Usumez S, Orhan M, Usumez A (2002) Laser etching of enamel for direct bonding with an Er,Cr:YSGG hydrokinetic laser system. Am J Orthod Dentofacial Orthop 122(6):649–656

    Article  PubMed  Google Scholar 

  32. Marotti J, Geraldo-Martins VR, Bello-Silva MS, de Paula Eduardo C, Apel C, Gutknecht N (2008) Influence of etching with erbium, chromium:yttrium-scandium-gallium-garnet laser on microleakage of class V restoration. Lasers Med Sci May; 25(3):325-329

    Google Scholar 

  33. Bello-Silva MS, Lage-Marques JL, Marotti J, de Paula Eduardo C, Apel C, Gutknecht N (2008) Calcitonin, sodium alendronate and high intensity laser in the treatment of traumatized teeth: a preliminary study. Lasers Med Sci May; 25(3):331-337

    Google Scholar 

  34. Li R, Ren Y, Han J (2000) Effects of pulsed Nd:YAG laser irradiation on shear bond strength of composite resin bonded to porcelain. Hua Xi Kou Qiang Yi Xue Za Zhi 18(6):377–379

    PubMed  CAS  Google Scholar 

  35. Turkmen C, Sazak H, Gunday M (2006) Effects of the Nd:YAG laser, air-abrasion, and acid-etchant on filling materials. J Oral Rehabil 33(1):64–69

    Article  PubMed  CAS  Google Scholar 

  36. Akova T, Yoldas O, Toroglu MS, Uysal H (2005) Porcelain surface treatment by laser for bracket-porcelain bonding. Am J Orthod Dentofacial Orthop 128(5):630–637

    Article  PubMed  Google Scholar 

  37. Burnett LH Jr, Shinkai RS, de Paula Eduardo C (2004) Tensile bond strength of a one-bottle adhesive system to indirect composites treated with Er:YAG laser, air abrasion, or fluoridric acid. Photomed Laser Surg 22(4):351–356

    Article  PubMed  Google Scholar 

  38. Spohr AM, Borges GA, Junior LH, Mota EG, Oshima HM (2008) Surface modification of In-Ceram Zirconia ceramic by Nd:YAG laser, Rocatec system, or aluminum oxide sandblasting and its bond strength to a resin cement. Photomed Laser Surg 26(3):203–208

    Article  PubMed  CAS  Google Scholar 

  39. Cavalcanti AN, Foxton RM, Watson TF, Oliveira MT, Giannini M, Marchi GM (2009) Bond strength of resin cements to a zirconia ceramic with different surface treatments. Oper Dent 34(3):280–287

    Article  PubMed  Google Scholar 

  40. Blatz MB, Sadan A, Kern M (2003) Resin-ceramic bonding: a review of the literature. J Prosthet Dent 89(3):268–274

    Article  PubMed  CAS  Google Scholar 

  41. Ozcan M (2003) Evaluation of alternative intra-oral repair techniques for fractured ceramic-fused-to-metal restorations. J Oral Rehabil 30(2):194–203

    Article  PubMed  CAS  Google Scholar 

  42. Valandro LF, Della Bona A, Antonio Bottino M, Neisser MP (2005) The effect of ceramic surface treatment on bonding to densely sintered alumina ceramic. J Prosthet Dent 93(3):253–259

    Article  PubMed  CAS  Google Scholar 

  43. Ozcan M, Vallittu PK (2003) Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater 19(8):725–731

    Article  PubMed  CAS  Google Scholar 

  44. Ozcan M, Matinlinna JP, Vallittu PK, Huysmans MC (2004) Effect of drying time of 3-methacryloxypropyltrimethoxysilane on the shear bond strength of a composite resin to silica-coated base/noble alloys. Dent Mater 20(6):586–590

    Article  PubMed  Google Scholar 

  45. Shiu P, De Souza-Zaroni WC, de Paula Eduardo C, Youssef MN (2007) Effect of feldspathic ceramic surface treatments on bond strength to resin cement. Photomed Laser Surg 25(4):291–296

    Article  PubMed  CAS  Google Scholar 

  46. Gokce B, Ozpinar B, Dundar M, Comlekoglu E, Sen BH, Gungor MA (2007) Bond strengths of all-ceramics: acid vs laser etching. Oper Dent 32(2):173–178

    Article  PubMed  CAS  Google Scholar 

  47. Stubinger S, Homann F, Etter C, Miskiewicz M, Wieland M, Sader R (2008) Effect of Er:YAG, CO(2) and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers Surg Med 40(3):223–228

    Article  PubMed  Google Scholar 

  48. Meister J, Franzen R, Forner K, Grebe H, Stanzel S, Lampert F et al (2006) Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers. J Biomed Opt 11(3):34030

    Article  PubMed  Google Scholar 

  49. Zhang Y, Lawn BR, Malament KA, Van Thompson P, Rekow ED (2006) Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont 19(5):442–448

    PubMed  Google Scholar 

  50. Schoop U, Kluger W, Moritz A, Nedjelik N, Georgopoulos A, Sperr W (2004) Bactericidal effect of different laser systems in the deep layers of dentin. Lasers Surg Med 35(2):111–116

    Article  PubMed  Google Scholar 

  51. Zhang Y, Lawn BR, Rekow ED, Thompson VP (2004) Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater 71(2):381–386

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico; 303798/2005-0), FAPESP/CEPID (Fundação de Amparo à Pesquisa do Estado de São Paulo/Centros de Pesquisa, Inovação e Difusão; 98/14270-8).

Conflict of interest

The authors state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos de Paula Eduardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Paula Eduardo, C., Bello-Silva, M.S., Moretto, S.G. et al. Microtensile bond strength of composite resin to glass-infiltrated alumina composite conditioned with Er,Cr:YSGG laser. Lasers Med Sci 27, 7–14 (2012). https://doi.org/10.1007/s10103-010-0822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-010-0822-9

Keywords

Navigation