Skip to main content

Advertisement

Log in

Building an environmental quality index for a big city: a spatial interpolation approach combined with a distance indicator

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

One of the main tasks of regional and environmental economics is to construct Environmental Quality Indexes for big cities. A standard method is to generate a single measure as a linear combination of several contaminants by applying Principal Component Analysis. Spatial interpolation is then carried out to determine pollution levels across the city. We innovate on this method and propose an alternative approach. First, we combine a set of noise and air pollutants measured at a number of monitoring stations with data available for each census tract. This yields a mixed environmental index that is socioeconomically more complete. We then apply kriging to match the monitoring station records to the census data. Finally, we construct a composite pollution index using the Pena Distance method (DP2), which proves more robust than traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of satellite images is an alternative although complex way to overcome the scarcity of ground monitoring stations (Kanaroglou et al. 2002).

  2. Cokriging can also be a good option in a multivariate approach since it accounts not just for the spatial dependence of each variable but also for the inter-variable correlation (Montero et al. 2009). However, it is more complex than kriging and often yields no additional benefits. This is true, say, for the so-called ‘isotopic case’, i.e. when variables are measured at the same monitoring stations. Cokriging is tantamount to kriging in the specific case of autokrigeability (Subramanyam and Pandalai 2004). Besides, when using cokriging, not only are valid variograms needed to represent the structure of the spatial dependence of the variables but valid cross-variograms are too.

  3. Another option would be direct estimation of the environmental index including the correction factor and the conditions proposed by Matheron (1979), but in our opinion this is much more difficult to implement than our proposal.

  4. PCA and DP2 are complementary—not substitute—methods (see Zarzosa 1996, p. 194; Cancelo and Uriz 1994, pp. 177–178). PCA is capable of reducing the information of a group of variables and eliminating redundant information. DP2, though, also allows relative comparisons between different spatial units and/or time periods.

  5. As shown in Pena (1977) and Zarzosa (1996), DP2 fulfils all the properties of a good composite indicator; i.e. existence and determination, monotony, unicity, invariance, homogeneity, transitivity, exhaustivity, and additivity.

  6. Some indicators have clear reference values (e.g. those legally established by national or international organizations). This is the case of most air quality variables (SO2, CO, etc.), for which the EU has set limits for the protection of human health (Official Journal of the European Union 2008). However, we have opted not to use them owing to the complexity and diversity of the measurements, which do not match the average annual data available for Madrid.

  7. If all the partial indicators are uncorrelated, R 2 = 0 and DP2 = DF.

  8. Ivanovic (1963) proposed the I-Distance, which considered the partial coefficients as a correction factor. However, as stated in Pena (1977), this procedure cannot eliminate the redundant information of the DF.

  9. These data can be downloaded from the Municipality of Madrid’s web page (http://www.munimadrid.es).

  10. All the computations are available from the authors upon request.

References

  • Anselin L, Le Gallo J (2006) Interpolation of air quality measures in hedonic house price models: spatial aspects. Spat Econ Anal 1(1):31–52

    Article  Google Scholar 

  • Anselin L, Lozano-Gracia N (2008) Errors in variables and spatial effects in hedonic house price models of ambient air quality. Empir Econ 34(5):5–34

    Article  Google Scholar 

  • Azqueta D, Escobar L (2004) Calidad de vida urbana. Ekonomiaz 57(3):216–239

    Google Scholar 

  • Banzhaf HS (2005) Green price indices. J Environ Econ Manag 49(2):262–280

    Article  Google Scholar 

  • Baranzini A, Ramírez JV (2005) Paying for quietness: the impact of noise on Geneva rents. Urban Stud 42(4):633–646

    Article  Google Scholar 

  • Cancelo JR, Uriz P (1994) Una metodología general para la elaboración de índices complejos de dotación de infraestructuras. Rev Estud Reg 40:167–188

    Google Scholar 

  • Chay KY, Greenstone M (2005) Does air quality matter? Evidence from the housing market. J Polit Econ 113(2):376–424

    Article  Google Scholar 

  • Chen KH, Metcalf RW (1980) The relationship between pollution control record and financial indicators revisited. Account Rev 55(1):168–177

    Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modelling spatial uncertainty. Wiley, New York

    Google Scholar 

  • Council of Madrid (2008) Plan de uso sostenible de la energía y prevención del cambio climático de la ciudad de Madrid. Área de Gobierno de Medio Ambiente. Madrid. http://www.munimadrid.es/UnidadWeb/Contenidos/Publicaciones/TemaMedioAmbiente/PlanEnergia/Planenergiasostenible.pdf. Accessed 25 Feb 2009

  • Cummins R (2000) Personal income and subjective well-being: a review. J Happiness Stud 1:133–158

    Article  Google Scholar 

  • De Iaco S, Myers DE, Posa D (2001) Total air pollution and space–time modelling. In: Monestiez P, Allard D, Froidevaux R (eds) GeoEnv III—geostatistics for environmental applications. Kluwer, Dordrecht, pp 45–56

    Google Scholar 

  • De Iaco S, Myers DE, Posa D (2002) Space–time variograms and a functional form for total air pollution measurements. Comput Stat Data Anal 41(2):311–328

    Article  Google Scholar 

  • Delfim L, Martins I (2007) Monitoring urban quality of life: the Porto experience. Soc Indicat Res 80(2):411–425

    Article  Google Scholar 

  • Delucchi MA, Murphy JJ, McCubbin DR (2002) The health and visibility cost of air pollution: a comparison of estimation methods. J Environ Manag 64(2):139–152

    Article  Google Scholar 

  • Dumedah G, Schuurman N, Yang W (2008) Minimizing effects of scale distortion for spatially grouped census data using rough sets. J Geogr Syst 10(1):47–69

    Article  Google Scholar 

  • Eber U, Welsch H (2004) Meaningful environmental indices: a social choice approach. J Environ Econ Manag 47(2):270–283

    Article  Google Scholar 

  • EEA (2000) Are we moving in the right direction? Indicators on transport and environment integration in the EU. Environmental issue report, 12/2000

  • Emery X (2000) Geoestadística lineal. Departamento de Ingeniería de Minas, Facultad de CC. Físicas y Matemáticas, Universidad de Chile

  • Escobar L (2008) Indicadores ambientales sintéticos: una aproximación conceptual desde la estadística multivariante. Gest Ambient 11(1):121–140

    Google Scholar 

  • Filzmoser P (1999) Robust principal component and factor analysis in the geostatistical treatment of environmental data. Environ 10(4):363–375

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Gotway CA, Young L (2002) Combining incompatible spatial data. J Am Stat Assoc 97(458):632–648

    Article  Google Scholar 

  • Hendrix ME, Hartley PR, Osherson D (2005) Real estate values and air pollution: measured levels and subjective expectations. Discussion Paper, Rice University

  • Hewings JD, Nazara S, Dridi C (2004) Channels of synthesis forty years on: integrated analysis of spatial economic systems. J Geogr Syst 6(1):7–25

    Article  Google Scholar 

  • Ivanovic B (1963) Classification of underdeveloped areas according to level of economic development. East Eur Econ 2(1–2):45–61

    Google Scholar 

  • Ivanovic B (1974) Comment établir une liste des indicateurs de development. Rev Stat Appl 22(2):37–50

    Google Scholar 

  • Jenks GF, Caspall FC (1971) Error on choroplethic maps: definition, measurement, reduction. Ann Assoc Am Geogr 61(2):217–244

    Article  Google Scholar 

  • Kanaroglou PS, Soulakellis NA, Sifakis NI (2002) Improvement of satellite derived pollution maps with the use of geostatistical interpolation method. J Geogr Syst 4(2):193–208

    Article  Google Scholar 

  • Kim CW, Phipps TT, Anselin L (2003) Measuring the benefits of air quality improvement: a spatial hedonic approach. J Environ Econ Manag 45(1):24–39

    Article  Google Scholar 

  • Lark RM, Papritz A (2003) Fitting a linear model of corregionalization for soil properties using simulate annealing. Geoderma 115(3–4):245–260

    Article  Google Scholar 

  • Liu BC (1978) Variations in social quality of life indicators in medium metropolitan areas. Am J Econ Sociol 37(3):241–260

    Article  Google Scholar 

  • Matheron G (1979) Recherche de simplification dans un problème de cokrigeage. Publication no 628. Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau

    Google Scholar 

  • Meliker JR, Slotnick MJ, AvRuskin GA, Kaufmann A, Jacquez GM, Nriagu JO (2005) Improving exposure assessment in environmental epidemiology: application of spatio-temporal visualization tools. J Geogr Syst 7(1):49–66

    Article  Google Scholar 

  • Miedema HME, Oudshoorn CGM (2001) Annoyance from transportation noise: relationships with exposure metrics DNL and DENL and their confidence interval. Environ Health Perspect 109(4):409–416

    Article  Google Scholar 

  • Mishra SK (2007) Construction of maximin and non-elitist composite indices—alternatives to elitist indices obtained by the principal components analysis. MPRA Paper, 3338. University Library of Munich, Germany

    Google Scholar 

  • Montero JM, Larraz B (2006) Estimación espacial del precio de la vivienda mediante métodos de krigeado. Estad Esp 48(162):201–240

    Google Scholar 

  • Montero JM, Larraz B (2010) Estimating housing prices: a proposal with spatially correlated data. Int Adv Econ Res 16(1):39–51

    Google Scholar 

  • Montero JM, Larraz B, Paez A (2009) Estimating commercial property prices: an application of cokriging with housing prices as ancillary information. J Geogr Syst 11(4):407–425

    Article  Google Scholar 

  • Murthy MN, Gulati SC, Banerjee A (2003) Hedonic property prices and valuation of benefits from reducing urban air pollution in India. Delhi Discussion Papers 62, Institute of Economic Growth, Delhi, India. http://www.ideas.repec.org/p/ind/iegddp/62.html. Accessed 24 Feb 2009

  • Myers DE (1983) Estimation of linear combinations and cokriging. Math Geol 15(5):633–637

    Article  Google Scholar 

  • Neill HR, Hassenzahl DM, Assane DD (2007) Estimating the effect of air quality: spatial versus traditional hedonic price models. South Econ J 73(4):1088–1111

    Google Scholar 

  • Nelson JP (2004) Meta-analysis of airport noise and hedonic property values. J Transp Econ Policy 38(1):1–28

    Google Scholar 

  • Nunes P, Schokkaert E (2003) Identifying the warm glow effect in contingent valuation. J Environ Econ Manag 45(2):231–245

    Article  Google Scholar 

  • Núñez JJ, Domínguez J (2007) A Proposal of a synthetic indicator to measure poverty intensity, with an application to EU-15 Countries. ECINEQ, Society for the Study of Economic Inequality, working paper 81

  • Official Journal of the European Union (2008) Directive 2008/50/Ec of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. http://www.eur-lex.europa.eu/JOIndex.do. Accessed 12 Jan 2009

  • Palmquist RB (2005) Property value models. In: Mäler KG, Vincent J (eds) Handbook of environmental economics, vol 2. North Holland, Amsterdam

    Google Scholar 

  • Peeters L, Chasco C (2006) Ecological inference and spatial heterogeneity: an entropy-based distributionally weighted regression approach. Pap Reg Sci 85(2):257–276

    Article  Google Scholar 

  • Pena JB (1977) Problemas de la medición del bienestar y conceptos afines (Una aplicación al caso español). Presidencia del Gobierno, Instituto Nacional de Estadística, Madrid

    Google Scholar 

  • Pender A, Dunne L, Convery FF (2000) Environmental indicators for the urban environment: a literature review. Environ Stud Res Ser, working paper, ESRS/00/07

  • Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam

    Google Scholar 

  • Ram R (1982a) International inequality in the basic needs indicators. J Dev Econ 10(1):113–117

    Article  Google Scholar 

  • Ram R (1982b) Composite indices of physical quality of life, basic needs fulfillment, and income. A ‘principal component’ representation. J Dev Econ 11(2):227–247

    Article  Google Scholar 

  • Royuela V, Suriñach J, Reyes M (2003) Measuring quality of life in small areas over different periods of time. Analysis of the province of Barcelona. Soc Indic Res 64(1):51–74

    Article  Google Scholar 

  • Sánchez MA, Rodríguez N (2003) El bienestar social en los municipios andaluces en 1999. Rev Astur Econ 27:99–119

    Google Scholar 

  • Segnestam L (2002) Indicators of environment and sustainable development. Theories and practical experience. World Bank Environment Department, Environmental and Economic Series, paper no 89

  • Shi C, Hutchinson SM, Xu S (2004) Evaluation of coastal zone sustainability: an integration approach applied in Shanghai municipality and Chong Ming Island. J Environ Manag 71(4):335–344

    Article  Google Scholar 

  • Smith VK, Huang JC (1993) Hedonic models and air pollution: twenty-five years and counting. Environ Resour Econ 36(1):23–36

    Google Scholar 

  • Smith VK, Huang JC (1995) Can markets value air quality? A meta-analysis of hedonic property value models. J Polit Econ 103(1):209–227

    Article  Google Scholar 

  • Smith VK, Kaoru Y (1995) Signals or noise-explaining the variation in recreation benefit estimates. Am J Agric Econ 72(2):419–433

    Article  Google Scholar 

  • Somarriba N, Pena B (2008) Quality of life and subjective welfare in Europe: an econometric analysis. Appl Econom Int Dev 8(2). http://www.usc.es/~economet/aeid.htm

  • Spence JS, Carmack PS, Gunst RF, Schucany WR, Woodward WA, Haley W (2007) Accounting for spatial dependence in the analysis of SPECT Brain Imaging Data. J Am Stat Assoc 102(478):464–473

    Article  Google Scholar 

  • Statheropoulos M, Vassiliadis N, Pappa A (1998) Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmos Environ 32(6):1087–1095

    Article  Google Scholar 

  • Stern RE (2003) Hong Kong haze: air pollution as a social class issue. Asian Surv 43(5):780–800

    Article  Google Scholar 

  • Subramanyam A, Pandalai HS (2004) On the equivalence of the cokriging and kriging systems. Math Geol 36(4):507–523

    Article  Google Scholar 

  • Tzeng S, Huang HC, Cressie N (2005) A fast, optimal spatial-prediction method for massive datasets. J Am Stat Assoc 100(472):1343–1357

    Article  Google Scholar 

  • UNEP (2001) Urban air quality management. SCP source book series, vol 6. UN-HABITAT, Nairobi

    Google Scholar 

  • Vicéns J, Chasco C (2001) Estimación del indicador sintético de bienestar social. Anuario Social 2000, Colección Estudios Sociales. Working papers 1. “La Caixa”, Barcelona

  • Wackernagel H (1998) Principal component analysis for autocorrelated data: a geostatistical perspective. Technical report, Centre de Geostatistique, Ecole de Mines de Paris

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, Berlin

  • WHO (2006) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global update 2005, Summary of risk assessment. WHO Press, Geneva

    Google Scholar 

  • Zarzosa P (1996) Aproximación a la medición del bienestar social. Secretariado de Publicaciones e Intercambio Científico, Universidad de Valladolid

Download references

Acknowledgments

Previous versions of this paper were presented at the 3rd Jean Paelinck Seminar on Spatial Econometrics (Cartagena, Spain, October 10–11, 2008), at the 2nd World Conference of the Spatial Econometrics Association (New York City, November 18–19, 2008), and at the 56th North American Meeting of the Regional Science Association International (New York City, November 19–21, 2008). We would like to thank Toni Mora, Jan Mutl, Roberto Patuelli, Vicente Royuela, Richard Sellner, and other participants at those meetings for their valuable comments. The usual disclaimer applies. Coro Chasco acknowledges financial support from the Spanish Ministry of Education and Science SEJ2006-02328/ECON and the Comunidad de Madrid CCG08-UAM/HUM-4173. Beatriz Larraz acknowledges the financial support of the MICINN project CSO2009-11246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coro Chasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero, JM., Chasco, C. & Larraz, B. Building an environmental quality index for a big city: a spatial interpolation approach combined with a distance indicator. J Geogr Syst 12, 435–459 (2010). https://doi.org/10.1007/s10109-010-0108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-010-0108-6

Keywords

JEL Classification

Navigation