Skip to main content
Log in

Random effects specifications in eigenvector spatial filtering: a simulation study

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Eigenvector spatial filtering (ESF) is becoming a popular way to address spatial dependence. Recently, a random effects specification of ESF (RE-ESF) is receiving considerable attention because of its usefulness for spatial dependence analysis considering spatial confounding. The objective of this study was to analyze theoretical properties of RE-ESF and extend it to overcome some of its disadvantages. We first compare the properties of RE-ESF and ESF with geostatistical and spatial econometric models. There, we suggest two major disadvantages of RE-ESF: it is specific to its selected spatial connectivity structure, and while the current form of RE-ESF eliminates the spatial dependence component confounding with explanatory variables to stabilize the parameter estimation, the elimination can yield biased estimates. RE-ESF is extended to cope with these two problems. A computationally efficient residual maximum likelihood estimation is developed for the extended model. Effectiveness of the extended RE-ESF is examined by a comparative Monte Carlo simulation. The main findings of this simulation are as follows: Our extension successfully reduces errors in parameter estimates; in many cases, parameter estimates of our RE-ESF are more accurate than other ESF models; the elimination of the spatial component confounding with explanatory variables results in biased parameter estimates; efficiency of an accuracy maximization-based conventional ESF is comparable to RE-ESF in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The expectation of MC, E[MC], equals \( - \frac{1}{N - 1} \) when M = I11′/N, whereas it equals \( - \frac{N}{{{\mathbf{1^{\prime}C1}}}}\frac{{tr[({\mathbf{X^{\prime}X}})^{ - 1} {\mathbf{X^{\prime}CX}}]}}{N - K - 1} \) when M = IX(XX) -1 X′. E[MC] < MC, MC < E[MC], and MC = E[MC] imply positive, negative, and no spatial dependence, respectively.

  2. \( {\hat{\mathbf{\beta }}} \) in Eq. (5) is identical to the generalized least squared estimator (Henderson 1975).

  3. Models with known mean structure are widely applied in geostatistics (e.g., Cressie and Wikle 2011).

  4. Although the covariance matrix of ω usually is defined by σ 2NS I + σ 2 γ (I + C), where σ 2NS is a variance parameter, because it can be expanded as follows: σ 2NS I + σ 2 γ (I + C) = (σ 2NS +σ 2γ)I + σ 2 γ C = σ 2 I + σ 2 γ C, the assumption of zero diagonal elements is consistent with the usual assumption.

  5. When M = I11 /N, RE-ESF approximates the geostatistical model with known constant mean.

  6. The asymmetric matrix W has real eigenvalues and eigenvectors (see Griffith 2000).

  7. Expanding the variance of in Eq. (22) as \( {\text{Var}}[{\mathbf{E\gamma }}] = \frac{{{\mathbf{\gamma^{\prime}E^{\prime}E\gamma }}}}{N} = \frac{{{\mathbf{\gamma^{\prime}\gamma }}}}{N} = \frac{1}{N}\sum\nolimits_{l} {{\text{diag}}[\sigma_{\gamma }^{2} k{\varvec{\Lambda}}(\alpha )]_{l} } = k\frac{{\sigma_{\gamma }^{2} }}{N}\sum\nolimits_{l} {\lambda_{l}^{\alpha } } \), where \( {\text{diag}}[ \cdot ]_{l} \) returns the lth diagonal of the matrix \( \cdot \). This equation shows that Var[] equals σ 2 γ when \( k = \frac{N}{{\sum\nolimits_{l} {\lambda_{l}^{\alpha } } }} \).

  8. Equation (5) is expanded using X E = 0, which M = IX(X X) -1 X implies, as \( \left[ {\begin{array}{*{20}c} {{\hat{\mathbf{\beta }}}} \\ {{\hat{\mathbf{\gamma }}}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{X^{\prime}X}}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{I}} + \frac{{\sigma_{{}}^{2} }}{{\sigma_{\gamma }^{2} }}{\varvec{\Lambda}}^{ - 1} } \\ \end{array} } \right]^{ - 1} \left[ {\begin{array}{*{20}c} {{\mathbf{X^{\prime}y}}} \\ {{\mathbf{E^{\prime}y}}} \\ \end{array} } \right] \) \( = \left[ {\begin{array}{*{20}c} {({\mathbf{X^{\prime}X}})^{ - 1} {\mathbf{X^{\prime}y}}} \\ {\left( {{\mathbf{I}} + \frac{{\sigma_{{}}^{2} }}{{\sigma_{\gamma }^{2} }}{\varvec{\Lambda}}^{ - 1} } \right)^{ - 1} {\mathbf{E^{\prime}y}}} \\ \end{array} } \right] \). Thus, \( {\hat{\mathbf{\beta }}} \) equals the estimate of the OLS estimate.

References

  • Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models. Geogr Anal 23(2):112–131

    Article  Google Scholar 

  • Arbia G, Fingleton B (2008) New spatial econometric techniques and applications in Regional Science. Pap Reg Sci 87(3):311–317

    Article  Google Scholar 

  • Bates DM (2010) lme4: Mixed-effects modeling with R. http://lme4.r-forge.r-project.org/book

  • Blancheta FG, Legendre P, Borcard D (2008) Modelling directional spatial process in ecological data. Ecol Model 215(4):325–336

    Article  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153(1–2):51–68

    Article  Google Scholar 

  • Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344

    Article  Google Scholar 

  • Chun Y (2014) Analyzing space–time crime incidents using eigenvector spatial filtering: an application to vehicle burglary. Geogr Anal 46(2):165–184

    Article  Google Scholar 

  • Chun Y, Griffith DA (2011) Modeling network autocorrelation in space–time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536

    Article  Google Scholar 

  • Chun Y, Griffith DA (2013) Spatial statistics and geostatistics: theory and applications for geographic information science and technology. SAGE, London

    Google Scholar 

  • Chun Y, Griffith DA (2014) A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model. Spat Stat 10:1–11

    Article  MathSciNet  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. John Wiley & Sons, New York

    Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New York

    MATH  Google Scholar 

  • Cuaresma CJ, Feldkircher M (2013) Spatial filtering, model uncertainty and the speed of income convergence in Europe. J Appl Econom 28(4):720–741

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196(3–4):483–493

    Article  Google Scholar 

  • Drineas P, Mahoney MW (2005) On the Nyström method for approximating a gram matrix for improved kernel-based learning. J Mach Learn Res 6:2153–2175

    MathSciNet  MATH  Google Scholar 

  • Elhorst JP (2010) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28

    Article  Google Scholar 

  • Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in European Union. J Reg Sci 48(5):969–989

    Article  Google Scholar 

  • Franzese RJ, Hays JC (2014) Testing for spatial-autoregressive lag versus (unobserved) spatially correlated error-components. Benjamin F. Shambaugh conference: New frontiers in the study of policy diffusion, University of Iowa, Iowa City

  • Getis A (1990) Screening for spatial dependence in regression analysis. Paper Reg Sci Assoc 69(1):69–81

    Article  Google Scholar 

  • Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140

    Article  Google Scholar 

  • Getis A, Ord K (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • Griffith DA (1996) Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying georeferenced data. Can Geogr 40(4):351–367

    Article  Google Scholar 

  • Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebr Appl 321(1–3):95–112

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith DA (2002) A spatial filtering specification of the auto-Poisson model. Stat Prob Letters 58(3):245–251

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Springer, Berlin

    Book  Google Scholar 

  • Griffith DA (2004a) A spatial filtering specification for the autologistic model. Environ Plan 36(10):1791–1811

    Article  Google Scholar 

  • Griffith DA (2004b) Distributional properties of georeferenced random variables based on the eigenfunction spatial filter. J Geogr Syst 6(3):263–288

    Article  MathSciNet  Google Scholar 

  • Griffith DA (2006) Hidden negative spatial autocorrelation. J Geogr Syst 8(4):335–355

    Article  Google Scholar 

  • Griffith DA (2008) Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ Plan 40(11):2751–2769

    Article  Google Scholar 

  • Griffith DA (2009) Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows. J Geogr Syst 11(2):117–140

    Article  Google Scholar 

  • Griffith DA (2010) Spatial filtering. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 301–318

    Chapter  Google Scholar 

  • Griffith DA (2011) Visualizing analytical spatial autocorrelation components latent in spatial interaction data: an eigenvector spatial filter approach. Comput Environ Urban Syst 35(2):140–149

    Article  MathSciNet  Google Scholar 

  • Griffith DA, Chun Y (2013) Spatial autocorrelation and spatial filtering. In: Fischer MM, Nijkamp P (eds) Handbook of regional science. Springer, Berlin, pp 1477–1507

    Google Scholar 

  • Griffith DA, Csillag F (1993) Exploring relationship between semi-variogram and spatial autoregressive models. Paper Reg Sci 72(3):283–295

    Article  Google Scholar 

  • Griffith DA, Fischer MM (2013) Constrained variants of the gravity model and spatial dependence: model specification and estimation issues. J Geogr Syst 15(3):291–317

    Article  Google Scholar 

  • Griffith DA, Layne L (1997) Uncovering relationships between geo-statistical and spatial autoregressive models. In: American Statistical Association (ed) Proceedings of the section on statistics and the environment 1997, American Statistical Association, Alexandria, Virginia, pp 91–96

  • Griffith DA, Paelinck JHP (2011) Non–standard spatial statistics and spatial econometrics. Springer, Berlin

    Book  Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecol 87(10):2603–2613

    Article  Google Scholar 

  • Grimpe C, Patuelli R (2009) Regional knowledge production in nanomaterials: a spatial filtering approach. Ann Reg Sci 46(3):519–541

    Article  Google Scholar 

  • Haskard KA, Lark RM (2009) Modelling non-stationary variance of soil properties by tempering an empirical spectrum. Geoderma 153(1–2):18–28

    Article  Google Scholar 

  • Helbich M, Arsanjani JJ (2014) Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr Geogr Inf Sci 42(2):134–148

    Article  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447

    Article  CAS  PubMed  MATH  Google Scholar 

  • Hodges JS (2013) Richly parameterized linear models: additive, time series, and spatial models using random effects. CRC Press, Boca Raton

    Google Scholar 

  • Hodges JS, Reich BJ (2010) Adding spatially-correlated errors can mess up the fixed effect you love. Am Stat 64(4):325–334

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc B Stat Methodol 75(1):139–159

    Article  MathSciNet  Google Scholar 

  • Jacob GB, Muturi EJ, Caamano EX, Gunter JT et al (2008) Hydrological modeling of geophysical parameters of arboviral and protozoan disease vectors in Internally Displaced People camps in Gulu, Uganda. Int J Health Geogr 7:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier Science BV, Amsterdam

    Google Scholar 

  • LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • LeSage JP, Pace RK (2014) The biggest myth in spatial econometrics. Econom 2(4):217–249

    Google Scholar 

  • LeSage JP, Parent O (2007) Bayesian model averaging for spatial econometric models. Geogr Anal 39(3):241–267

    Article  Google Scholar 

  • Moniruzzaman M, Paez A (2012) A model-based approach to select case sites for walkability audits. Health Place 18(6):1323–1334

    Article  PubMed  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biom 37(1/2):17–23

    CAS  MATH  Google Scholar 

  • Pace RK, LeSage JP (2010) Omitted variable biases of OLS and spatial lag models. In: Páez A, Gallo J, Buliung RN, Dall’erba S (eds) Progress in spatial analysis. Springer, Berlin, pp 17–28

    Chapter  Google Scholar 

  • Pace RK, LeSage JP, Zhu S (2013) Interpretation and computation of estimates from regression models using spatial filtering. Spat Econ Anal 8(3):352–369

    Article  Google Scholar 

  • Paciorek CJ (2010) The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Stat Sci 25(1):107–125

    Article  PubMed Central  MathSciNet  PubMed  Google Scholar 

  • Patuelli R, Griffith DA, Tiefelsdorf M, Nijkamp P (2011) Spatial filtering and eigenvector stability: space-time models for German unemployment data. Int Reg Sci Rev 34(2):253–280

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecol Soc Am 87(10):2614–2625

    Google Scholar 

  • Pintore A, Holmes CC (2004) Non-stationary covariance functions via spatially adaptive spectra. University of Oxford, Oxford

    Google Scholar 

  • Scherngell T, Lata R (2013) Towards an integrated European Research Area? Findings from eigenvector spatially filtered spatial interaction models using European Framework Programme data. Pap Reg Sci 92(3):555–577

    Google Scholar 

  • Seya H, Tsutsumi M, Yamagata Y (2014a) Weighted-average least squares applied to spatial econometric models: a Monte Carlo investigation. Geogr Anal 46(2):126–147

    Article  Google Scholar 

  • Seya H, Murakami D, Tsutsumi M, Yamagata Y (2014b) Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. Geogr Anal. doi:10.1111/gean.12054

    Google Scholar 

  • Thayn JB, Simanis JM (2013) Accounting for spatial autocorrelation in linear regression models using spatial filtering with eigenvectors. Ann Assoc Am Geogr 103(1):47–66

    Article  Google Scholar 

  • Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39(5):1193–1221

    Article  Google Scholar 

  • Wang Y, Kockelman KM, Wang X (2013) Understanding spatial filtering for analysis of land use-transport data. J Transp Geogr 31:123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We received helpful comments from Professor Arthur Getis at the 59th Annual North American Meetings of the Regional Science Association International. Also, we received generous support from Professor Morito Tsutsumi, University of Tsukuba, and Professor Yoshiki Yamagata, National Institute for Environmental Studies. We would particularly like to thank them. In addition, we are grateful to anonymous referees for their many suggestive comments. This work was supported by a grant-in-aid from the Japan Society for the Promotion of Science Fellows. In addition, this is an achievement of the Global Climate Risk Management Strategies (S10) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Murakami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, D., Griffith, D.A. Random effects specifications in eigenvector spatial filtering: a simulation study. J Geogr Syst 17, 311–331 (2015). https://doi.org/10.1007/s10109-015-0213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-015-0213-7

Keywords

JEL Classification

Navigation