Skip to main content
Log in

Production of Manoalide and Its Analogues by the Sponge Luffariella variabilis Is Hardwired

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The Great Barrier Reef sponge Luffariella variabilis (Poléjaeff 1884) produces a range of potent anti-inflammatory compounds as its major metabolites. These major metabolites—manoalide monoacetate, manoalide, luffariellin A and seco-manoalide—were monitored temporally and spatially to quantify the potential yield from wild harvest or aquaculture. Production of the major metabolites was hardwired at the population level with little variation in space and time over meters to tens of kilometers in the Palm Islands, Queensland, Australia. Manoalide monoacetate (35 to 70 mg g−1 dry weight of sponge) was consistently the most abundant compound followed by manoalide (15 to 20 mg g−1 dry weight). Luffariellin A and seco-manoalide were 10 to 70 times less abundant and varied between 0 and 3 mg g−1 dry weight. On a larger spatial scale, L. variabilis from Davies Reef and Magnetic Island contained the same rank order and yields of compounds as the Palm Islands, indicating a generality of pattern over at least 100 km. The “hardwiring” of metabolite production at the population level by L. variabilis was also reflected in the lack of any inductive effect on metabolite production. In addition, individually monitored sponges produced fixed ratios of the major metabolites over time (years). However, these ratios varied between individuals, with some individuals consistently producing high levels of manoalide and manoalide monoacetate, providing the potential for selection of high-yielding stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arnold TM, Tanner CE, Hatch WI (1995) Phenotypic variation in polyphenolic content of the tropical brown alga Lobophora variegata as a function of nitrogen availability. Mar Ecol Prog Ser 123, 177–183

    Article  CAS  Google Scholar 

  • Baker JT, Borris RP, Carte B, Cordell GA, Soejarto DD, Cragg GM, Gupta MP, Iwu MM, Madulid DR, Tyler VE (1995) Natural product drug discovery and development - new perspectives on international collaboration. J Nat Prod 58, 1325–1357

    Article  CAS  PubMed  Google Scholar 

  • Bergelson J, Purrington CB (1996) Surveying patterns in the cost of resistance in plants. Am Nat 148, 536–558

    Article  Google Scholar 

  • Bergquist PR (1980) A Revision of the Supraspecific Classification of the Orders Dictyoceratida, Dendroceratida, and Verongida (Class Demospongiae). N Z J Zool 7, 443–503

    Google Scholar 

  • Bergquist PR (1995) Dictyoceratida, Dendroceratida and Verongida from the New Caledonia lagoon (Porifera: Demospongiae). Mem Qld Mus 38, 1–51

    Google Scholar 

  • Cambie RC, Craw PA, Bergquist PR, Karuso P (1988) Chemistry of sponges, III. Manoalide monoacetate and thorectolide monoacetate, two new sesterterpenoids from Thorectandra excavatus. J Nat Prod 51, 331–334

    Article  Google Scholar 

  • Chanas B, Pawlik JR, Lindel T, Fenical W (1997) Chemical defense of the caribbean sponge Agelas clathrodes (Schmidt). J Exp Mar Biol Ecol 208, 185–196

    Article  Google Scholar 

  • Cronin G, Hay ME (1996a) Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77, 93–106

    Article  CAS  Google Scholar 

  • Cronin G, Hay ME (1996b) Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology 77, 1531–1543

    Article  Google Scholar 

  • de Nys R, Steinberg PD, Rogers CN, Charlton TS, Duncan MW (1996) Quantitative variation of secondary metabolites in the sea hare Aplysia parvula and its host plant, Delisea pulchra. Mar Ecol Prog Ser 130, 135–146

    Article  CAS  Google Scholar 

  • de Silva ED, Scheuer PJ (1980) Manoalide, an antibiotic sesterterpenoid from the marine sponge Luffariella variabilis (Polejaeff). Tet Lett 21, 1611–1614

    Article  Google Scholar 

  • de Silva ED, Scheuer PJ (1981) Three new sesquiterpenoid antibiotics from the marine sponge Luffariella variabilis (Polejaff). Tet Lett 22, 3147–3150

    Article  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411, 843–847

    Article  CAS  PubMed  Google Scholar 

  • Duckworth AR, Battershill CN (2001) Population dynamics and chemical ecology of New Zealand demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida : Latrunculiidae : Polymastiidae). N Z J Mar Freshw Res 35, 935–949

    Article  Google Scholar 

  • Duckworth A, Battershill C (2003) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221, 311–329

    Article  Google Scholar 

  • Duckworth AR, Battershill CN, Bergquist PR (1997) Influence of explant procedures and environmental factors on culture success of three sponges. Aquaculture 156, 251–267

    Article  Google Scholar 

  • Dunlap M, Pawlik JR (1998) Spongivory by parrotfish in Florida mangrove and reef habitats. Mar Ecol 19, 325–337

    Google Scholar 

  • Dworjanyn SA, Wright JT, Paul NA, de Nys R, Steinberg PD (2006) Cost of chemical defence in the red alga Delisea pulchra. Oikos 113, 13–22

    Article  CAS  Google Scholar 

  • Engel S, Pawlik JR (2000) Allelopathic activities of sponge extracts. Mar Ecol Prog Ser 207, 273–281

    Article  Google Scholar 

  • Ettinger-Epstein P, Motti CA, de Nys R, Wright AD, Battershill CN, Tapiolas DM (2007) Acetylated Sesterterpenes from the Great Barrier Reef Sponge Luffariella variabilis. J Nat Prod 70, 648–651

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19, 1–48

    CAS  PubMed  Google Scholar 

  • Harper MK, Bugni TS, Copp BR, James RD, Lindsay BS, Richardson AD, Schnabel PC, Tasdemir D, VanWagoner RM, Verbitski SM, Ireland CM (2001) “Introduction to the chemical ecology of marine natural products.” In: Marine Chemical Ecology, McClintock JB, Baker BJ, eds. (Boca Raton, FL: CRC Press) pp 3–69

    Google Scholar 

  • Hart JB, Lill RE, Hickford SJH, Blunt JW, Munro MHG (2000) “The halichondrins: chemistry, biology, supply and delivery.” In: Drugs from the Sea, Fusetani N, ed. (Basel: Karger), pp 134–153

    Chapter  Google Scholar 

  • Hay ME (1996) Marine chemical ecology—what’s known and what’s next. J Exp Mar Biol Ecol 200, 103–134

    Article  CAS  Google Scholar 

  • Hay ME, Steinberg PD (1992) “The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities.” In: Herbivores: Their Interaction with Secondary Plant Metabolites. Vol. II, Ecological and Evolutionary Processes, Rosenthal GA, Berembaum M, eds. (San Diego: Academic Press) pp 371–404

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants—to grow or defend. Q Rev Biol 67, 478–478

    Article  Google Scholar 

  • Huber DPW, Ralph S, Bohlmann J (2004) Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers. J Chem Ecol 30, 2399–2418

    Article  CAS  PubMed  Google Scholar 

  • Hunt B, Vincent ACJ (2006) Scale and sustainability of marine bioprospecting for pharmaceuticals. Ambio 35, 57–64

    Article  PubMed  Google Scholar 

  • Ireland CM, Copp BR, Foster MP, McDonald LA, Radisky DC, Swersy JC (1993) “Biomedical potential of marine natural products.” In: Marine Biotechnology: Pharmaceutical and Bioactive Natural Products, Attaway DH, Zaborsky OR, eds. (New York: Plenum Press) pp 1–43

    Google Scholar 

  • Jormalainen V, Honkanen T, Heikkila N (2001) Feeding preferences and performance of a marine isopod on seaweed hosts: cost of habitat specialization. Mar Ecol Prog Ser 220, 219–230

    Article  Google Scholar 

  • Jung V, Pohnert G (2001) Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron 57, 7169–7172

    Article  CAS  Google Scholar 

  • Kernan MR, Faulkner DJ, Jacobs RS (1987) The luffariellins, novel antiinflammatory sesterterpenes of chemotaxonomic importance from the marine sponge Luffariella variabilis. J Org Chem 52, 3081–3083

    Article  CAS  Google Scholar 

  • Lee EY, Lee HK, Lee YK, Sim CJ, Lee JH (2003) Diversity of symbiotic archaeal communities in marine sponges from Korea. Biomol Eng 20, 299–304

    Article  CAS  PubMed  Google Scholar 

  • Lindquist N (2002) Chemical defense of early life stages of benthic marine invertebrates. J Chem Ecol 28, 1987–2000

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Legentil S, Bontemps-Subielos N, Turon X, Banaigs B (2006) Temporal variation in the production of four secondary metabolites in a colonial ascidian. J Chem Ecol 32, 2079–2084

    Article  CAS  PubMed  Google Scholar 

  • Mendola D (2003) Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol Eng 20, 441–458

    Article  CAS  PubMed  Google Scholar 

  • Muller WEG, Grebenjuk VA, Thakur NL, Thakur AN, Batel R, Krasko A, Muller IM, Breter HJ (2004) Oxygen-controlled bacterial growth in the sponge Suberites domuncula: toward a molecular understanding of the symbiotic relationships between sponge and bacteria. Appl Environ Microbiol 70, 2332–2341

    Article  PubMed  CAS  Google Scholar 

  • Newmann DJ, Cragg GM (2004a) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67(8), 1216–1238

    Google Scholar 

  • Newmann DJ, Cragg GM (2004b) Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem 11(13), 1693–1713

    Google Scholar 

  • O’Neal W, Pawlik JR (2002) A reappraisal of the chemical and physical defenses of Caribbean gorgonian corals against predatory fishes. Mar Ecol Prog Ser 240, 117–126

    Article  CAS  Google Scholar 

  • Page M, West L, Northcote P, Battershill C, Kelly M (2005a) Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. J Chem Ecol 31, 1161–1174

    Article  CAS  Google Scholar 

  • Page MJ, Northcote PT, Webb VL, Mackey S, Handley SJ (2005b) Aquaculture trials for the production of biologically active metabolites in the New Zealand sponge Mycale hentscheli (Demospongiae : Poecilosclerida). Aquaculture 250, 256–269

    Article  CAS  Google Scholar 

  • Paterson IB, Anderson EA (2005) The renaissance of natural products as drug candidates. Science 21, 451–453

    Google Scholar 

  • Paul VJ, Van Alstyne KL (1992) Activation of chemical defenses in the tropical green-algae Halimeda spp. J Exp Mar Biol Ecol 160, 191–203

    Article  CAS  Google Scholar 

  • Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23, 153–180

    Article  CAS  PubMed  Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157, 139–146

    Article  CAS  Google Scholar 

  • Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93, 1911–1922

    Article  CAS  Google Scholar 

  • Pennings SC, Paul VJ (1993) Sequestration of dietary secondary metabolites by three species of sea hares—location, specificity and dynamics. Mar Biol 117, 535–546

    Article  CAS  Google Scholar 

  • Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21, 519–538

    Article  CAS  PubMed  Google Scholar 

  • Piel J (2006) Bacterial symbionts: Prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13, 39–50

    Article  CAS  PubMed  Google Scholar 

  • Pisut DP, Pawlik JR (2002) Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J Exp Mar Biol Ecol 270, 203–214

    Article  CAS  Google Scholar 

  • Pohnert G (2004) Chemical defense strategies of marine organisms. Top Curr Chem 239, 179–219

    Article  CAS  Google Scholar 

  • Pomponi SA (1999) The bioprocess-technological potential of the sea. J Biotechnol 70, 5–13

    Article  CAS  Google Scholar 

  • Puyana M, Fenical W, Pawlik JR (2003) Are there activated chemical defenses in sponges of the genus Aplysina from the Caribbean? Mar Ecol Prog Ser 246, 127–135

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Quinn RJ, Leone PD, Guymer G, Hooper JNA (2002) Australian biodiversity via its plants and marine organisms. A high-throughput screening approach to drug discovery. Pure Appl Chem 74, 519–526

    Article  CAS  Google Scholar 

  • Richelle-Maurer E, De Kluijver MJ, Feio S, Gaudencio S, Gaspar H, Gomez R, Tavares R, Van de Vyver G, Van Soest RWM (2003) Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas conifera. Biochem Syst Ecol 31, 1073–1091

    Article  CAS  Google Scholar 

  • Ridley CP, Bergquist PR, Harper MK, Faulkner DJ, Hooper JNA, Haygood MG (2005) Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbiont, Oscillatoria spongeliae. Chem Biol 12, 397–406

    Article  CAS  PubMed  Google Scholar 

  • Sennett SH (2001) “Marine chemical ecology: Applications in marine biomedical prospecting.” In: Marine Chemical Ecology, McClintock JB, Baker BJ, eds. (Boca Raton, FL: CRC Press), pp 523–542

    Google Scholar 

  • Simms EL (1992) “Costs of plant resistance to herbivores.” In: Plant Resistance to Herbivores and Pathogens. Ecology, Evolution, and Genetics, Fritz RS, Simms EL, eds. (Chicago: University of Chicago Press), pp 392–425

    Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78, 23–55

    Article  PubMed  Google Scholar 

  • Steel HC, Cockeran R, Anderson R (2002) Platelet-activating factor and lyso-PAF possess direct antimicrobial properties in vitro. Apmis 110, 158–164

    Article  CAS  PubMed  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17, 278–285

    Article  Google Scholar 

  • Swearingen DC, Pawlik JR (1998) Variability in the chemical defense of the sponge Chondrilla nucula against predatory reef fishes. Mar Biol 131, 619–627

    Article  Google Scholar 

  • Tan G, Gyllenhaal C, Soejarto DD (2006) Biodiversity as a source of anticancer drugs. Curr Drug Targets 7, 265–277

    Article  CAS  PubMed  Google Scholar 

  • Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34, 195–205

    Article  CAS  Google Scholar 

  • Tarjuelo I, Turon X (2004) Resource allocation in ascidians: reproductive investment vs. other life-history traits. Invertebr Biol 123, 168–180

    Article  Google Scholar 

  • Thacker RW, Becerro MA, Lumbang WA, Paul VJ (1998) Allelopathic interactions between sponges on a tropical reef. Ecology 79, 1740–1750

    Article  Google Scholar 

  • Thoms C, Ebel R, Proksch P (2006) Activated chemical defense in Aplysina sponges revisited. J Chem Ecol 32, 97–123

    Article  CAS  PubMed  Google Scholar 

  • Tollrian R, Harvell CD (1999) The Ecology and Evolution of Inducible Defenses. (Princeton, NJ: Princeton University Press)

    Google Scholar 

  • Toth GB, Langhamer O, Pavia H (2005) Inducible and constitutive defenses of valuable seaweed tissues: Consequences for herbivore fitness. Ecology 86, 612–618

    Article  Google Scholar 

  • Turon X, Becerro MA, Uriz MJ, Llopis J (1996) Small scale association measures in epibenthic communities as a clue for allelochemical interactions. Oecologia 108, 351–360

    Google Scholar 

  • Van Alstyne K (1988) Herbivore grazing increases polyphenolic defenses in the brown alga Fucus distichus. Ecology 69, 655–663

    Article  Google Scholar 

  • Van Alstyne KL, Pelletreau KN (2000) Effects of nutrient enrichment on growth and phlorotannin production in Fucus gardneri embryos. Mar Ecol Prog Ser 206, 33–43

    Article  CAS  Google Scholar 

  • Van Alstyne KL, Houser LT (2003) Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar Ecol Prog Ser 250, 175–181

    Article  CAS  Google Scholar 

  • Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C (2001) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser 213, 53–65

    Article  Google Scholar 

  • Wolfe GV, Steinke M (1996) Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol Oceanogr 41, 1151–1160

    Article  CAS  Google Scholar 

  • Wolfe GV, Steinke M, Kirst GO (1997) Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897

    Article  CAS  Google Scholar 

  • Wright JT, De Nys R, Poore AGB, Steinberg PD (2004) Chemical defense in a marine alga: Heritability and the potential for selection by herbivores. Ecology 85, 2946–2959

    Article  Google Scholar 

  • Yates JL, Peckol P (1993) Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74, 1757–1766

    Article  Google Scholar 

  • Zangerl AR, Rutledge CE (1996) The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am Nat 147, 599–608

    Article  Google Scholar 

Download references

Acknowledgments

Sponge material was collected under AIMS permit G05/11866.1 and JCU permit G0/18953.1. We thank P. Bergquist (University of Auckland) for taxonomic identification of sponge materials and J. Nielsen providing invaluable help with HPLC analyses. Special thanks also go to our many field and laboratory volunteers, including S. Whalan, E. Graham, D. Loong, and A-M Lynch, for their assistance. This work was supported by the Australian Institute of Marine Science, AIMS@JCU, the James Cook University Finfish and Emerging Aquaculture Research Advancement Program, the Great Barrier Reef Research Foundation, A Nancy Vernon Rankin Write-up scholarship to P.E., and a Queensland Government “Growing the Smart State” PhD Funding Program grant to P.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piers Ettinger-Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ettinger-Epstein, P., Tapiolas, D.M., Motti, C.A. et al. Production of Manoalide and Its Analogues by the Sponge Luffariella variabilis Is Hardwired. Mar Biotechnol 10, 64–74 (2008). https://doi.org/10.1007/s10126-007-9037-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9037-x

Keywords

Navigation