Skip to main content

Advertisement

Log in

New and emerging patient-centered CT imaging and image-guided treatment paradigms for maxillofacial trauma

  • Review Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

This article reviews the conceptual framework, available evidence, and practical considerations pertaining to nascent and emerging advances in patient-centered CT-imaging and CT-guided surgery for maxillofacial trauma. These include cinematic rendering—a novel method for advanced 3D visualization, incorporation of quantitative CT imaging into the assessment of orbital fractures, low-dose CT imaging protocols made possible with contemporary scanners and reconstruction techniques, the rapidly growing use of cone-beam CT, virtual fracture reduction with design software for surgical pre-planning, the use of 3D printing for fabricating models and implants, and new avenues in CT-guided computer-aided surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fishman EK, Drebin B, Magid D, Scott WW Jr, Ney DR, Brooker AF Jr, Riley LH Jr, St Ville JA, Zerhouni EA, Siegelman SS (1987) Volumetric rendering techniques: applications for three-dimensional imaging of the hip. Radiology 163(3):737–738

    Article  PubMed  CAS  Google Scholar 

  2. Catmull E, Fishman EK, Horton KM, Raman SP (2015) From toy story to CT scans: lessons from Pixar for radiology. J Am Coll Radiol 12(9):978–979

    Article  PubMed  Google Scholar 

  3. Fellner FA (2016) Introducing cinematic rendering: a novel technique for post-processing medical imaging data. J Biomed Sci Eng 9(03):170–175

    Article  Google Scholar 

  4. Eid M et al (2017) Cinematic rendering in CT: a novel, Lifelike 3D Visualization Technique. Am J Roentgenol:1–10

  5. Fox LA, Vannier MW, West OC, Wilson AJ, Baran GA, Pilgram TK (1995) Diagnostic performance of CT, MPR and 3DCT imaging in maxillofacial trauma. Comput Med Imaging Graph 19(5):385–395

    Article  PubMed  CAS  Google Scholar 

  6. Reuben A et al A comparative study of evaluation of radiographs, CT and 3D reformatted CT in facial trauma: what is the role of 3D? Br J Radiol 2014

  7. Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H (2016) Cinematic rendering–an alternative to volume rendering for 3D computed tomography imaging. Insights into Imaging 7(6):849–856

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saigal K, Winokur RS, Finden S, Taub D, Pribitkin E (2005) Use of three-dimensional computerized tomography reconstruction in complex facial trauma. Facial Plast Surg 21(03):214–220

    Article  PubMed  CAS  Google Scholar 

  9. Remmler D, Denny A, Gosain A, Subichin S (2000) Role of three-dimensional computed tomography in the assessment of nasoorbitoethmoidal fractures. Ann Plast Surg 44(5):553–563

    Article  PubMed  CAS  Google Scholar 

  10. Mehta N, Butala P, Bernstein MP (2012) The imaging of maxillofacial trauma and its pertinence to surgical intervention. Radiol Clin North Am 50(1):43–57

    Article  PubMed  Google Scholar 

  11. Johnson PT et al (2017) MDCT angiography with 3D rendering: a novel cinematic rendering algorithm for enhanced anatomic detail. Am J Roentgenol:1–4

  12. Strong EB, Fuller SC, Chahal HS (2013) Computer-aided analysis of orbital volume: a novel technique. Ophthal Plast Reconstr Surg 29(1):1–5

    Article  PubMed  Google Scholar 

  13. Manson PN, Grivas A, Rosenbaum A, Vannier M, Zinreich J, Iliff N (1986) Studies on enophthalmos: II. The measurement of orbital injuries and their treatment by quantitative computed tomography. Plast Reconstr Surg 77(2):203–214

    Article  PubMed  CAS  Google Scholar 

  14. Raskin EM et al Prediction of late enophthalmos by volumetric analysis of orbital fractures. 1998. LWW

  15. Hawes MJ, Dortzbach RK (1983) Surgery on orbital floor fractures: influence of time of repair and fracture size. Ophthalmology 90(9):1066–1070

    Article  PubMed  CAS  Google Scholar 

  16. Dreizin D, Nam AJ, Diaconu SC, Bernstein MP, Bodanapally UK, Munera F (2018) Multidetector CT of Midfacial fractures: classification systems, principles of reduction, and common complications. RadioGraphics 38(1):248–274

    Article  PubMed  Google Scholar 

  17. Fan X, Li J, Zhu J, Li H, Zhang D (2003) Computer-assisted orbital volume measurement in the surgical correction of late enophthalmos caused by blowout fractures. Ophthal Plast Reconstr Surg 19(3):207–211

    Article  PubMed  Google Scholar 

  18. Grant MP, Iliff NT, Manson PN (1997) Strategies for the treatment of enophthalmos. Clin Plast Surg 24(3):539–550

    PubMed  CAS  Google Scholar 

  19. Ploder O, Klug C, Backfrieder W, Voracek M, Czerny C, Tschabitscher M (2002) 2D-and 3D-based measurements of orbital floor fractures from CT scans. J Craniomaxillofac Surg 30(3):153–159

    Article  PubMed  Google Scholar 

  20. Jin H-R, Shin SO, Choo MJ, Choi YS (2000) Relationship between the extent of fracture and the degree of enophthalmos in isolated blowout fractures of the medial orbital wall. J Oral Maxillofac Surg 58(6):617–620

    Article  PubMed  CAS  Google Scholar 

  21. Gilbard SM, Mafee MF, Lagouros PA, Langer BG (1985) Orbital blowout fractures the prognostic significance of computed tomography. Ophthalmology 92(11):1523–1528

    Article  PubMed  CAS  Google Scholar 

  22. Bite U, Jackson IT, Forbes GS, Gehring DG (1985) Orbital volume measurements in enophthalmos using three-dimensional CT imaging. Plast Reconstr Surg 75(4):502–507

    Article  PubMed  CAS  Google Scholar 

  23. Diaconu SC, Dreizin D, Uluer M, Mossop C, Grant MP, Nam AJ (2017) The validity and reliability of computed tomography orbital volume measurements. J Craniomaxillofac Surg 45:1552–1557

    Article  PubMed  Google Scholar 

  24. Lee J, Chiu H (1993) Quantitative computed tomography for evaluation of orbital volume change in blow-out fractures. J Formos Med Assoc= Taiwan yi zhi 92(4):349–355

    PubMed  CAS  Google Scholar 

  25. Whitehouse R et al (1994) Prediction of enophthalmos by computed tomography after “blow out” orbital fracture. Br J Ophthalmol 78(8):618–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Forbes G, Gehring DG, Gorman CA, Brennan MD, Jackson IT (1985) Volume measurements of normal orbital structures by computed tomographic analysis. Am J Roentgenol 145(1):149–154

    Article  CAS  Google Scholar 

  27. Deveci M, Öztürk S, Şengezer M, Pabuşcu Y (2000) Measurement of orbital volume by a 3-dimensional software program: an experimental study. J Oral Maxillofac Surg 58(6):645–648

    Article  PubMed  CAS  Google Scholar 

  28. Widmann G, Dalla Torre D, Hoermann R, Schullian P, Gassner EM, Bale R, Puelacher W (2015) Ultralow-dose computed tomography imaging for surgery of midfacial and orbital fractures using ASIR and MBIR. Int J Oral Maxillofac Surg 44(4):441–446

    Article  PubMed  CAS  Google Scholar 

  29. Widmann G, Bischel A, Stratis A, Kakar A, Bosmans H, Jacobs R, Gassner EM, Puelacher W, Pauwels R (2016) Ultralow dose dentomaxillofacial CT imaging and iterative reconstruction techniques: variability of Hounsfield units and contrast-to-noise ratio. Br J Radiol 89(1060):20151055

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schell B, Bauer RW, Lehnert T, Kerl JM, Hambek M, May A, Vogl TJ, Mack MG (2011) Low-dose computed tomography of the paranasal sinus and facial skull using a high-pitch dual-source system—first clinical results. Eur Radiol 21(1):107–112

    Article  PubMed  Google Scholar 

  31. Moritz JD, Hoffmann B, Sehr D, Keil K, Eggerking J, Groth G, Caliebe A, Dischinger J, Heller M, Bolte H (2012) Evaluation of ultra-low dose CT in the diagnosis of pediatric-like fractures using an experimental animal study. Korean J Radiol 13(2):165–173

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bulla S, Blanke P, Hassepass F, Krauss T, Winterer JT, Breunig C, Langer M, Pache G (2012) Reducing the radiation dose for low-dose CT of the paranasal sinuses using iterative reconstruction: feasibility and image quality. Eur J Radiol 81(9):2246–2250

    Article  PubMed  Google Scholar 

  33. Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271(2):327–342

    Article  PubMed  Google Scholar 

  34. Kyriakou Y, Kolditz D, Langner O, Krause J, Kalender W (2011) Digital volume tomography (DVT) and multislice spiral CT (MSCT): an objective examination of dose and image quality. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 183(2):144–153

    Article  PubMed  CAS  Google Scholar 

  35. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am J Roentgenol 194(1):191–199

    Article  Google Scholar 

  36. McCollough CH, Chen GH, Kalender W, Leng S, Samei E, Taguchi K, Wang G, Yu L, Pettigrew RI (2012) Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology 264(2):567–580

    Article  PubMed  PubMed Central  Google Scholar 

  37. De Vos W, Casselman J, Swennen G (2009) Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 38(6):609–625

    Article  PubMed  Google Scholar 

  38. Cohenca N, Simon JH, Roges R, Morag Y, Malfaz JM (2007) Clinical indications for digital imaging in dento-alveolar trauma. Part 1: traumatic injuries. Dent Traumatol 23(2):95–104

    Article  PubMed  Google Scholar 

  39. Miracle A, Mukherji S (2009) Conebeam CT of the head and neck, part 2: clinical applications. Am J Neuroradiol 30(7):1285–1292

    Article  PubMed  CAS  Google Scholar 

  40. Scarfe WC (2005) Imaging of maxillofacial trauma: evolutions and emerging revolutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100(2):S75–S96

    Article  PubMed  Google Scholar 

  41. Shintaku WH, Venturin JS, Azevedo B, Noujeim M (2009) Applications of cone-beam computed tomography in fractures of the maxillofacial complex. Dent Traumatol 25(4):358–366

    Article  PubMed  Google Scholar 

  42. Tsiklakis K, Donta C, Gavala S, Karayianni K, Kamenopoulou V, Hourdakis CJ (2005) Dose reduction in maxillofacial imaging using low dose cone beam CT. Eur J Radiol 56(3):413–417

    Article  PubMed  Google Scholar 

  43. Dreizin D, Nam AJ, Tirada N, Levin MD, Stein DM, Bodanapally UK, Mirvis SE, Munera F (2016) Multidetector CT of mandibular fractures, reductions, and complications: a clinically relevant primer for the radiologist. RadioGraphics 36(5):1539–1564

    Article  PubMed  Google Scholar 

  44. Heiland M, Schulze D, Rother U, Schmelzle R (2004) Postoperative imaging of zygomaticomaxillary complex fractures using digital volume tomography. J Oral Maxillofac Surg 62(11):1387–1391

    Article  PubMed  Google Scholar 

  45. Schulze D et al Radiation exposure during midfacial imaging using 4-and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofacial Radiol 2014

  46. Westendorff C, Gulicher D, Dammann F, Reinert S, Hoffmann J (2006) Computer-assisted surgical treatment of orbitozygomatic fractures. J Craniofac Surg 17(5):837–842

    Article  PubMed  Google Scholar 

  47. Stanley RB (1999) Use of intraoperative computed tomography during repair of orbitozygomatic fractures. Arch Facial Plast Surg 1(1):19–24

    Article  PubMed  Google Scholar 

  48. Pham AM, Rafii AA, Metzger MC, Jamali A, Strong BE (2007) Computer modeling and intraoperative navigation in maxillofacial surgery. Otolaryngol Head Neck Surg 137(4):624–631

    Article  PubMed  Google Scholar 

  49. Morrison CS, Taylor HO, Sullivan SR (2013) Utilization of intraoperative 3D navigation for delayed reconstruction of orbitozygomatic complex fractures. J Craniofac Surg 24(3):e284–e286

    Article  PubMed  Google Scholar 

  50. Andrews BT, Surek CC, Tanna N, Bradley JP (2013) Utilization of computed tomography image-guided navigation in orbit fracture repair. Laryngoscope 123(6):1389–1393

    Article  PubMed  Google Scholar 

  51. Bell RB, Markiewicz MR (2009) Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg 67(12):2559–2570

    Article  PubMed  Google Scholar 

  52. Lauer G, Pradel W, Schneider M, Eckelt U (2006) Efficacy of computer-assisted surgery in secondary orbital reconstruction. J Craniomaxillofac Surg 34(5):299–305

    Article  PubMed  Google Scholar 

  53. Metzger MC, Schön R, Schulze D, Carvalho C, Gutwald R, Schmelzeisen R (2006) Individual preformed titanium meshes for orbital fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(4):442–447

    Article  PubMed  Google Scholar 

  54. Jacobs CA, Lin AY (2017) A new classification of three-dimensional printing technologies: systematic review of three-dimensional printing for patient-specific Craniomaxillofacial surgery. Plast Reconstr Surg 139(5):1211–1220

    Article  PubMed  CAS  Google Scholar 

  55. Bill JS, Reuther JF, Dittmann W, Kübler N, Meier JL, Pistner H, Wittenberg G (1995) Stereolithography in oral and maxillofacial operation planning. Int J Oral Maxillofac Surg 24(1):98–103

    Article  PubMed  CAS  Google Scholar 

  56. Gander T, Essig H, Metzler P, Lindhorst D, Dubois L, Rücker M, Schumann P (2015) Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures. J Craniomaxillofac Surg 43(1):126–130

    Article  PubMed  Google Scholar 

  57. He D, Li Z, Shi W, Sun Y, Zhu H, Lin M, Shen G, Fan X (2012) Orbitozygomatic fractures with enophthalmos: analysis of 64 cases treated late. J Oral Maxillofac Surg 70(3):562–576

    Article  PubMed  Google Scholar 

  58. Kermer C, Lindner A, Friede I, Wagner A, Millesi W (1998) Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxillofac Surg 26(3):136–139

    Article  PubMed  CAS  Google Scholar 

  59. Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, George E, Wake N, Caterson EJ, Pomahac B, Ho VB, Grant GT, Rybicki FJ (2015) Medical 3D printing for the radiologist. RadioGraphics 35(7):1965–1988

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kozakiewicz M, Elgalal M, Loba P, Komuński P, Arkuszewski P, Broniarczyk-Loba A, Stefańczyk L (2009) Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Craniomaxillofac Surg 37(4):229–234

    Article  PubMed  Google Scholar 

  61. Frame M, Huntley JS (2012) Rapid prototyping in orthopaedic surgery: a user's guide. Sci World J 2012:1–7

    Article  Google Scholar 

  62. Kozakiewicz M, Szymor P (2013) Comparison of pre-bent titanium mesh versus polyethylene implants in patient specific orbital reconstructions. Head Face Med 9(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen, J. Idea to Implementation: Reimbursement, the Elephant in the Room. 2017 September 17, 2017]; Available from: http://3dheals.com/idea-implementation-reimbursement-elephant-room/

  64. Enquobahrie A, Gobbi D, Turek MW, Cheng P, Yaniv Z, Lindseth F, Cleary K (2008) Designing tracking software for image-guided surgery applications: IGSTK experience. Int J Comput Assist Radiol Surg 3(5):395–403

    Article  PubMed  PubMed Central  Google Scholar 

  65. Strong EB, Rafii A, Holhweg-Majert B, Fuller SC, Metzger MC (2008) Comparison of 3 optical navigation systems for computer-aided maxillofacial surgery. Arch Otolaryngol–Head Neck Surg 134(10):1080–1084

    Article  PubMed  Google Scholar 

  66. Gumprecht HK, Widenka DC, Lumenta CB (1999) BrainLab VectorVision Neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery 44(1):97–104

    Article  PubMed  CAS  Google Scholar 

  67. Olson G, Citardi MJ (2000) Image-guided functional endoscopic sinus surgery. Otolaryngol Head Neck Surg 123(3):188–194

    Article  PubMed  CAS  Google Scholar 

  68. Hassfeld S, Zöller J, Albert FK, Wirtz CR, Knauth M, Mühling J (1998) Preoperative planning and intraoperative navigation in skull base surgery. J Craniomaxillofac Surg 26(4):220–225

    Article  PubMed  CAS  Google Scholar 

  69. Gellrich N-C, Schramm A, Hammer B, Rojas S, Cufi D, Lagrèze W, Schmelzeisen R (2002) Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg 110(6):1417–1429

    PubMed  Google Scholar 

  70. Watzinger F, Wanschitz F, Wagner A, Enislidis G, Millesi W, Baumann A, Ewers R (1997) Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma. J Craniomaxillofac Surg 25(4):198–202

    Article  PubMed  CAS  Google Scholar 

  71. Klug C, Schicho K, Ploder O, Yerit K, Watzinger F, Ewers R, Baumann A, Wagner A (2006) Point-to-point computer-assisted navigation for precise transfer of planned zygoma osteotomies from the stereolithographic model into reality. J Oral Maxillofac Surg 64(3):550–559

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dreizin.

Ethics declarations

Conflict of interest

David Dreizin is the recipient of a research grant from Siemens Healthineers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreizin, D., Nam, A.J., Hirsch, J. et al. New and emerging patient-centered CT imaging and image-guided treatment paradigms for maxillofacial trauma. Emerg Radiol 25, 533–545 (2018). https://doi.org/10.1007/s10140-018-1616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-018-1616-9

Keywords

Navigation