Skip to main content
Log in

Arbitrary-Order Trigonometric Fourier Collocation Methods for Multi-Frequency Oscillatory Systems

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We rigorously study a novel type of trigonometric Fourier collocation methods for solving multi-frequency oscillatory second-order ordinary differential equations (ODEs) \(q^{\prime \prime }(t)+Mq(t)=f(q(t))\) with a principal frequency matrix \(M\in \mathbb {R}^{d\times d}\). If \(M\) is symmetric and positive semi-definite and \(f(q) = -\nabla U(q)\) for a smooth function \(U(q)\), then this is a multi-frequency oscillatory Hamiltonian system with the Hamiltonian \(H(q,p)=p^{T}p/2+q^{T}Mq/2+U(q),\) where \(p = q'\). The solution of this system is a nonlinear multi-frequency oscillator. The new trigonometric Fourier collocation method takes advantage of the special structure brought by the linear term \(Mq\), and its construction incorporates the idea of collocation methods, the variation-of-constants formula and the local Fourier expansion of the system. The properties of the new methods are analysed. The analysis in the paper demonstrates an important feature, namely that the trigonometric Fourier collocation methods can be of an arbitrary order and when \(M\rightarrow 0\), each trigonometric Fourier collocation method creates a particular Runge–Kutta–Nyström-type Fourier collocation method, which is symplectic under some conditions. This allows us to obtain arbitrary high-order symplectic methods to deal with a special and important class of systems of second-order ODEs in an efficient way. The results of numerical experiments are quite promising and show that the trigonometric Fourier collocation methods are significantly more efficient in comparison with alternative approaches that have previously appeared in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Brugnano and F. Iavernaro. Line integral methods which preserve all invariants of conservative problems. J. Comput. Appl. Math. 236 (2012), 3905–3919.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Brugnano, F. Iavernaro and D. Trigiante. A note on the efficient implementation of Hamiltonian BVMs. J. Comput. Appl. Math. 236 (2011), 375–383.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Brugnano, F. Iavernaro and D. Trigiante. A simple framework for the derivation and analysis of effective one-step methods for ODEs. Appl. Math. Comput. 218 (2012), 8475–8485.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Brugnano, F. Iavernaro and D. Trigiante. Energy and Quadratic Invariants Preserving integrators based upon Gauss collocation formulae. SIAM J. Numer. Anal. 50 (2012), 2897–2916.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.W. Butler and A.T.A. Wood. Laplace approximations for hypergeometric functions with matrix argument. Ann. Statist. 30 (2002), 1155–1177.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel. Energy-Preserving Integrators and the Structure of B-series. Found. Comput. Math. 10 (2010), 673–693.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Chartier and A. Murua. Preserving first integrals and volume forms of additively split systems. IMA J. Numer. Anal. 27 (2007), 381–405.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.L. Cieslinski and B. Ratkiewicz. Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems. J. Phys. A: Math. Theor. 44 (2011), 155206.

    Article  MathSciNet  Google Scholar 

  9. D. Cohen. Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J. Numer. Anal. 26 (2006), 34–59.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Cohen and E. Hairer. Linear energy-preserving integrators for Poisson systems. BIT 51 (2011), 91–101.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Cohen, E. Hairer and C. Lubich. Numerical energy conservation for multi-frequency oscillatory differential equations. BIT 45 (2005), 287–305.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Cohen, T. Jahnke, K. Lorenz and C. Lubich. Numericalintegrators for highly oscillatory Hamiltonian systems: a review, inAnalysis, Modeling and Simulation of Multiscale Problems (A. Mielke,ed.). Springer, Berlin (2006), 553–576.

    Chapter  Google Scholar 

  13. M. Dahlby, B. Owren and T. Yaguchi. Preserving multiple first integrals by discrete gradients. J. Phys. A: Math. Theor. 44 (2011), 305205.

    Article  MathSciNet  Google Scholar 

  14. J.M. Franco. Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Comm. 147 (2002), 770–787.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.M. Franco. Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173 (2005), 389–396.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.M. Franco. New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56 (2006), 1040–1053.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. García, P. Martín and A.B. González. New methods for oscillatory problems based on classical codes. Appl. Numer. Math. 42 (2002), 141–157.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. García-Archilla, J.M. Sanz-Serna and R.D. Skeel. Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20 (1999), 930–963.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Gutiérrez, J. Rodriguez and A.J. Sáez. Approximation of hypergeometric functions with matricial argument through their development in series of zonal polynomials. Electron. Trans. Numer. Anal. 11 (2000), 121–130.

    MathSciNet  MATH  Google Scholar 

  20. E. Hairer. Energy-preserving variant of collocation methods. JNAIAM J. Numer. Anal. Ind. Appl. Math. 5 (2010), 73–84.

    MathSciNet  Google Scholar 

  21. E. Hairer and C. Lubich. Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38 (2000), 414–441.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Hairer, C. Lubich and G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. 2nd edn. Springer-Verlag, Berlin, Heidelberg, 2006.

    Google Scholar 

  23. E. Hairer, R.I. McLachlan and R.D. Skeel. On energy conservation of the simplified Takahashi-Imada method. Math. Model. Numer. Anal. 43 (2009), 631–644.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Hairer, S.P. Nørsett and G. Wanner. Solving OrdinaryDifferential Equations I: Nonstiff Problems. Springer-Verlag,Berlin, 1993.

    MATH  Google Scholar 

  25. J.K. Hale. Ordinary Differential Equations. Roberte E. Krieger Publishing company, Huntington, New York, 1980.

    MATH  Google Scholar 

  26. M. Hochbruck and C. Lubich. A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83 (1999), 403–426.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Hochbruck and A. Ostermann. Explicit exponential Runge-Kutta methods for semilineal parabolic problems. SIAM J. Numer. Anal. 43 (2005), 1069–1090.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numer. 19 (2010), 209–286.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Hochbruck, A. Ostermann and J. Schweitzer. Exponential rosenbrock-type methods. SIAM J. Numer. Anal. 47 (2009), 786–803.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Iavernaro and B. Pace. Conservative Block-Boundary Value Methods for the solution of Polynomial Hamiltonian Systems. AIP Conf. Proc. 1048 (2008), 888–891.

    Article  Google Scholar 

  31. F. Iavernaro and D. Trigiante. High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4 (2009), 787–101.

    MathSciNet  Google Scholar 

  32. A. Iserles. A First Course in the Numerical Analysis of Differential Equations. 2nd edn. Cambridge University Press, Cambridge, 2008.

    Book  Google Scholar 

  33. A. Iserles, G.R.W. Quispel and P.S.P. Tse. B-series methods cannot be volume-preserving. BIT 47 (2007), 351–378.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Iserles and A. Zanna. Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math. 125 (2000), 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Koev and A. Edelman. The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comput. 75 (2006), 833–846.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Leok and T. Shingel. Prolongation-collocation variational integrators. IMA J. Numer. Anal. 32 (2012), 1194–1216.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Li, B. Wang, X. You and X. Wu. Two-step extended RKN methods for oscillatory systems. Comput. Phys. Comm. 182 (2011), 2486–2507.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Li and X. Wu. Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algo. 62 (2013), 355–381.

    Article  MATH  Google Scholar 

  39. R.I. McLachlan, G.R.W. Quispel and P.S.P. Tse. Linearization-preserving self-adjoint and symplectic integrators. BIT 49 (2009), 177–197.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Petkovšek, H.S. Wilf and D. Zeilberger. A=B, AK Peters Ltd., Wellesley, MA, 1996.

    MATH  Google Scholar 

  41. G.R.W. Quispel and D.I. McLaren. A new class of energy-preserving numerical integration methods. J. Phys. A 41 (2008), 045206.

    Article  MathSciNet  Google Scholar 

  42. E.D. Rainville. Special functions. Macmillan, New York, 1960.

    MATH  Google Scholar 

  43. S. Reich. Symplectic integration of constrained Hamiltonian systems by composition methods. SIAM J. Numer. Anal. 33 (1996), 475–491.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Reich. On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. Numer. Math. 76 (1997), 231–247.

    Article  MathSciNet  MATH  Google Scholar 

  45. D.S.P. Richards. High-Dimensional Random Matrices from the Classical Matrix Groups, and Generalized Hypergeometric Functions of Matrix Argument. Symmetry 3 (2011), 600–610.

    Article  MathSciNet  Google Scholar 

  46. J.M. Sanz-Serna. Symplectic integrators for Hamiltonian problems: an overview. Acta Numer. 1 (1992), 243–286.

    Article  MathSciNet  Google Scholar 

  47. C.W. Scherr and E.V. Ivash. Associated Legendre Functions. Am. J. Phys. 31 (1963), 753.

    Article  MathSciNet  Google Scholar 

  48. L.J. Slater. Generalized hypergeometric functions. Cambridge University Press, Cambridge, 1966.

    MATH  Google Scholar 

  49. Sun Geng. Construction of high order symplectic Runge-Kutta methods. J. Comput. Math. 11 (1993), 250–260.

    MathSciNet  MATH  Google Scholar 

  50. P.J. Van der Houwen and B.P. Sommeijer. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 24 (1987), 595–617.

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Van de Vyver. A fourth-order symplectic exponentially fitted integrator. Comput. Phys. Comm. 174 (2006), 115–130.

    Google Scholar 

  52. B. Wang, K. Liu and X. Wu. A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243 (2013), 210–223.

    Article  MathSciNet  Google Scholar 

  53. B. Wang and X. Wu. A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376 (2012), 1185–1190.

    Article  MathSciNet  MATH  Google Scholar 

  54. B. Wang, X. Wu and H. Zhao. Novel improved multidimensional Strömer-Verlet formulas with applications to four aspects in scientific computation. Math. Comput. Modell. 57 (2013), 857–872.

    Article  MathSciNet  MATH  Google Scholar 

  55. K. Wright. Some relationships between implicit Runge-Kutta, collocation and Lanczos \(\tau \) methods, and their stability properties. BIT 10 (1970), 217–227.

    Article  MATH  Google Scholar 

  56. X. Wu and B. Wang. Multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems. Comput. Phys. Comm. 181 (2010), 1955–1962.

    Article  MathSciNet  MATH  Google Scholar 

  57. X. Wu, B. Wang and W. Shi. Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235 (2013), 587–605.

    Article  MathSciNet  MATH  Google Scholar 

  58. X. Wu, B. Wang and J. Xia. Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods. BIT 52 (2012), 773–795.

    Article  MathSciNet  MATH  Google Scholar 

  59. X. Wu, X. You, W. Shi and B. Wang. ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Comm. 181 (2010), 1873–1887.

    Article  MathSciNet  MATH  Google Scholar 

  60. X. Wu, X. You and B. Wang. Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer-Verlag, Berlin, Heidelberg, 2013.

    Book  MATH  Google Scholar 

  61. X. Wu, X. You and J. Xia. Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Comm. 180 (2009), 2250–2257.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Bin Wang and Xinyuan Wu were supported in part by the Natural Science Foundation of China under Grants 11271186 and 11401333, by NSFC and RS International Exchanges Project under Grant 113111162, by the Specialized Research Foundation for the Doctoral Program of Higher Education under Grant 20130091110041, by the 985 Project at Nanjing University under Grant 9112020301, by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, by the Natural Science Foundation of Shandong Province under Grant ZR2014AQ003. Bin Wang is sincerely thankful to Numerical Analysis Group at University of Cambridge since the work was partly done when he was studying in this group as a visiting student. The revised version of the manuscript was completed during Bin Wang and Xinyuan Wu were visiting to Numerical Analysis Group at University of Cambridge in July and August, 2014. The authors are sincerely thankful to two anonymous reviewers for their valuable suggestions, which help improve the presentation of the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Additional information

Communicated by Hans Munthe-Kaas.

Appendices

Appendix 1: Proof of Theorem 4.3

By virtue of Lemma 4.1, (27) and (28), one has

$$\begin{aligned}&H(\omega (h))-H(\mathbf {y}_0) =h \int _{0}^{1} \nabla H(\omega (\xi h))^T\omega '(\xi h)\mathrm{d}\xi \\&\quad =h \int _{0}^{1} \Big ( \big (Mv(\xi h)-\sum \limits _{j=0}^ {\infty }\widehat{P}_j(\xi )\gamma _j(v)\big )^T,\ u(\xi h)^T\Big )\\&\qquad \cdot \left( \begin{array}{c} u(\xi h) \\ -Mv(\xi h)+\sum \limits _{j=0}^ {r-1}\widehat{P}_j(\xi )\sum \limits _{l=1}^ {k}b_l\widehat{P}_j(c_l)f(v(c_l h)) \end{array} \right) \mathrm{d}\xi \\&\quad =h \int _{0}^{1} u(\xi h)^T \Big (\sum \limits _{j=0}^ {r-1}\widehat{P}_j(\xi )\sum \limits _{l=1}^ {k}b_l\widehat{P}_j(c_l)f(v(c_l h))-\sum \limits _{j=0}^ {\infty }\widehat{P}_j(\xi )\gamma _j(v) \Big )\mathrm{d}\xi \\&\quad =h \int _{0}^{1} u(\xi h)^T \Big (-\sum \limits _{j=0}^ {r-1}\widehat{P}_j(\xi )\varDelta _j(h)-\sum \limits _{j=r}^ {\infty }\widehat{P}_j(\xi )\gamma _j(v) \Big )\mathrm{d}\xi \\&\quad =-h \sum \limits _{j=0}^ {r-1}\int _{0}^{1} u(\xi h)^T \widehat{P}_j(\xi )\mathrm{d}\xi \varDelta _j(h)-h\sum \limits _{j=r}^ {\infty }\int _{0}^{1} u(\xi h)^T \widehat{P}_j(\xi )\mathrm{d}\xi \gamma _j(v)\\&\quad =h \sum \limits _{j=0}^ {r-1}\mathcal {O}(h^{j}\times h^{m-j})+h\sum \limits _{j=r}^{\infty } \mathcal {O}(h^{j}\times h^{j}) =\mathcal {O}(h^{m+1})+\mathcal {O}(h^{2r+1}). \end{aligned}$$

\(\square \)

Appendix 2: Proof of Theorem 4.4

From \(Q(\mathbf {y})=q^TDp\) and \(D^T=-D\), it follows that

$$\begin{aligned}&Q(\omega (h))-Q(\mathbf {y}_0) =h \int _{0}^{1} \nabla Q(\omega (\xi h))^T\omega '(\xi h)\mathrm{d}\xi \\&\quad =h \int _{0}^{1} \Big (- u(\xi h)^TD,\ v(\xi h)^TD\Big )\left( \begin{array}{c} u(\xi h) \\ -Mv(\xi h)\!+\!\sum \limits _{j=0}^ {r-1}\widehat{P}_j(\xi )\sum \limits _{l=1}^ {k}b_l\widehat{P}_j(c_l)f(v(c_l h)) \end{array} \right) \mathrm{d}\xi . \end{aligned}$$

Since \(q^TD(f(q)-Mq)=0\) for any \(q\in \mathbb {R}^{d}\), we obtain

$$\begin{aligned}&Q(\omega (h))-Q(\mathbf {y}_0) =h \int _{0}^{1} v(\xi h)^TD \Big (-Mv(\xi h)+\sum \limits _{j=0}^ {r-1}\widehat{P}_j(\xi )\sum \limits _{l=1}^ {k}b_l\widehat{P}_j(c_l)f(v(c_l h))\Big )\mathrm{d}\xi \\&\quad =h \int _{0}^{1} v(\xi h)^TD \Big (\sum \limits _{j=0}^ {r-1}\widehat{P}_j(\xi )\sum \limits _{l=1}^ {k}b_l\widehat{P}_j(c_l)f(v(c_l h))-\sum \limits _{j=0}^ {\infty }\widehat{P}_j(\xi )\gamma _j(v)\Big )\mathrm{d}\xi \\&\quad =h \int _{0}^{1} v(\xi h)^TD \Big ( -\sum \limits _{j=0}^ {r-1}\widehat{P}_j(\xi )\varDelta _j(h)-\sum \limits _{j=r}^ {\infty }\widehat{P}_j(\xi )\gamma _j(v)\Big )\mathrm{d}\xi \\&\quad =-h \sum \limits _{j=0}^ {r-1}\int _{0}^{1} v(\xi h)^TD \widehat{P}_j(\xi )\mathrm{d}\xi \varDelta _j(h)-h\sum \limits _{j=r}^ {\infty }\int _{0}^{1} v(\xi h)^TD \widehat{P}_j(\xi )\mathrm{d}\xi \gamma _j(v) \\&\quad =h \sum \limits _{j=0}^ {r-1}\mathcal {O}(h^{j}\times h^{m-j})+h\sum \limits _{j=r}^{\infty } \mathcal {O}(h^{j}\times h^{j}) =\mathcal {O}(h^{m+1})+\mathcal {O}(h^{2r+1}). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Iserles, A. & Wu, X. Arbitrary-Order Trigonometric Fourier Collocation Methods for Multi-Frequency Oscillatory Systems. Found Comput Math 16, 151–181 (2016). https://doi.org/10.1007/s10208-014-9241-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9241-9

Keywords

Mathematics Subject Classification

Navigation