Skip to main content
Log in

Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color M-mode Doppler echocardiograms

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A computational fluid dynamics study of intraventricular flow during early diastole was carried out using a 3D model of the human left ventricle (LV). It was found that a vortical flow formed under the aortic orifice and then grew in size and extended laterally along the ventricular wall towards the posterior side. With further expansion of the LV, it developed into an annular vortex asymmetrically enlarged on the side of the aortic orifice, narrowing the passage of blood inflow and thus causing a shift of the high-velocity portion of inflow towards the apex. This appeared as an elongation of the aliasing area when the velocity of the inflow was expressed as a spatiotemporal map in the same manner as a color M-mode Doppler (CMD) echocardiogram. Based on these findings, it was concluded that the shape of the aliasing area in a CMD echocardiogram shows the change in the velocity of blood inflow affected by the development of an annular vortex formed in the LV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Bellhouse BJ (1972) Fluid mechanics of a model mitral valve and left ventricle. Cardiovas Res 6:199–210

    CAS  Google Scholar 

  • Beppu S, Izumi S, Miyatake K, Nagata S, Park YD, Sakakibara H, Nimura Y (1988) Abnormal blood pathways in left ventricular cavity in acute myocardial infarction. Experimental observations with special reference to regional wall motion abnormality and hemostasis. Circulation 78:157–164

    CAS  PubMed  Google Scholar 

  • Brun P, Tribouilloy C, Duval-Moulin AM, Iserin L, Meguira A, Pelle G, Dubois-Rande JL (1992) Left ventricular flow propagation during early filling is related to wall relaxation : a color m-mode Doppler analysis. J Am Coll Cardiol 20:420–432

    CAS  PubMed  Google Scholar 

  • Courtois MR, Kovacs SJ, Jr, Ludbrook, PA (1987) The diastolic atrioventricular pressure relationship is a function of site of pressure measurement in the left ventricle (abstract). Circulation 76 Suppl IV: IV-426

    Google Scholar 

  • Courtois MR, Kovacs SJ, Jr, Ludbrook PA (1988) Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78:661–671

    CAS  PubMed  Google Scholar 

  • De Mey S, De Sutter J, Vierendeels J, Verdonck P (2001) Diastolic filling and pressure imaging: taking advantage of the information in a colour M-mode Doppler image. Eur J Echocardiogr 2:219–233

    Article  PubMed  Google Scholar 

  • Duval-Moulin AM, Dupouy P, Brun P, Zhuang F, Pelle G, Perez Y, Teiger E, Castaigne A, Gueret P, Dubois-Rande JL (1997) Alteration of left ventricular diastolic function during coronary angioplasty-induced ischemia. J Am Soc Echocardiogr 29:1246–1255

    CAS  Google Scholar 

  • Ebbers T, Wigstrom L, Bolger AF, Wranne B, Karlsson M (2002) Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J Biomech Eng 124:288–293

    Article  CAS  PubMed  Google Scholar 

  • Grossman W, Barry WH (1980) Diastolic pressure–volume relations in the diseased heart. Fed Proc 39:148–155

    CAS  PubMed  Google Scholar 

  • Honma H, Oobayashi K, Ueda K (1998) Echographic anatomy for echocardiograms. In: Japan Medical Association (eds) Guide to echocardiography, pp. 3–16. Nakayama, Tokyo

  • Jacobs LE, Kotler MN, Parry WR (1990) Flow patterns in dilated cardiomyopathy: a pulsed-wave and color flow Doppler study. J Am Soc Echocardiogr 3:294–302

    CAS  PubMed  Google Scholar 

  • Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404:759–761

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Walker PG, Pedersen EM, Poulsen JK, Oyre S, Houlind K, Yoganathan AP (1995) Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J Am Coll Cardiol 26:224–238

    Article  CAS  PubMed  Google Scholar 

  • Kitabatake A, Inoue M, Asao M, Tanouchi J, Masuyama T, Abe H, Morita H, Senda S, Matsuo H (1982) Transmitral blood flow reflecting diastolic behavior of the left ventricle in health and disease—a study by pulsed Doppler technique. Jap Circ J 46:92–102

    CAS  Google Scholar 

  • Lemmon JD, Yoganathan AP (2000a) Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. J Biomech Eng 122:109–117

    Article  CAS  PubMed  Google Scholar 

  • Lemmon JD, Yoganathan AP (2000b) Computational modeling of left heart diastolic function: examination of ventricular dysfunction. J Biomech Eng 122:297–303

    Article  CAS  PubMed  Google Scholar 

  • McQueen DM, Peskin CS (2000) Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity. In: Aref H, Philips JW (eds) Mechanics for a new millennium, pp. 429–444. Kluwer, Dordrecht

  • Moller JE, Sondergaard E, Seward JB, Appleton CP, Egstrup K (2000) Ratio of left ventricular peak E-wave velocity to flow propagation velocity assessed by color m-mode Doppler echocardiography in first myocardial infarction: prognostic and clinical implications. J Am Coll Cardiol 35:363–370

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Wada S, Mikami T, Kitabatake A, Karino T (2001) Relationship between intraventricular flow patterns and the shapes of the aliasing area in color M-mode Doppler echocardiograms—a CFD study with an axisymmetric model of the LV. JSME Int J Ser C 44:1013–1020

    Article  Google Scholar 

  • Nakamura M, Wada S, Mikami T, Kitabatake A, Karino T (2002) A computational fluid mechanical study on the effects of opening and closing of the mitral orifice on a transmitral flow velocity profile and an early diastolic intraventricular flow. JSME Int J Ser C 45:913–922

    Google Scholar 

  • Osman NF, Kerwin WS, McVeigh ER, Prince JL (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42:1048–1060

    Article  CAS  PubMed  Google Scholar 

  • Owen A A (1993) numerical model of early diastolic filling: importance of intraventricular pressure wave propagation. Cardiovasc Res 27:255–261

    CAS  PubMed  Google Scholar 

  • Peskin CS, McQueen DM (1989a) A three-dimensional computation method for blood flow in the heart. I. Immersed elastic fibres in a viscous incompressible fluid. J Comp Phys 81:372–405

    Google Scholar 

  • Peskin CS, McQueen DM (1989b) A three-dimensional computation method for blood flow in the heart. II. Contractile fibers. J Comp Phys 82:289–297

    Google Scholar 

  • Peskin CS, McQueen DM (1995) A general method for the computer simulation of biological systems interacting with fluids. Symp Soc Exp Biol 49:265–276

    CAS  PubMed  Google Scholar 

  • Pouleur H, Hanet C, Gurne O, Rousseau MF (1989) Focus on diastolic dysfunction: a new approach to heart failure therapy. Br J Clin Pharmacol 28 Suppl 1:41S–52S

    Google Scholar 

  • Sabbah HN, Stein PD (1981) Pressure–diameter relations during early diastole in dogs. Incompatibility with the concept of passive left ventricular filling. Circ Res 48:357–365

    CAS  PubMed  Google Scholar 

  • Saber NR, Gosman AD, Wood NB, Kilner PJ, Charrier CL, Firmin DN (2001) Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann Biomed Eng 29:275–283

    Article  CAS  PubMed  Google Scholar 

  • Samstad SO, Rossvoll O, Torp HG, Skjaerpe T, Hatle L (1992) Cross-sectional early mitral flow–velocity profiles from color Doppler in patients with mitral valve disease. Circulation 86:748–55

    CAS  PubMed  Google Scholar 

  • Shortland AP, Black RA, Jarvis JC, Henry FS, Iudicello F, Collins MW, Salmons S (1996) Formation and travel of vortices in model ventricles: application to the design of skeletal muscle ventricles. J Biomech 29:503–511

    Article  CAS  PubMed  Google Scholar 

  • Stuber M, Nagel E, Fischer SE, Spiegel MA, Scheidegger MB, Boesiger P (1998) Quantification of the local heart wall motion by magnetic resonance myocardial tagging. Comput Med Imag Graph 22:217–228

    Article  CAS  Google Scholar 

  • Stugaard M, Brodahl U, Torp H, Ihlen H (1994) Abnormalities of left ventricular filling in patients with coronary artery disease: assessment by colour M-mode Doppler technique. Eur Heart J 15:318–327

    CAS  PubMed  Google Scholar 

  • Stugaard M, Greenberg NL, Zhou J, Thomas JD (1997) Automated eigenvector analysis for quantification of color M-mode Doppler filling patterns of the left ventricle in an ischemic canine model. Comp Cardiol 24:61–64

    Google Scholar 

  • Stugaard M, Smiseth OA, Risoe C, Ihlen H (1993) Intraventricular early diastolic filling during acute myocardial ischemia, assessment by multigated color m-mode Doppler echocardiography. Circulation 88:2705–2713

    CAS  PubMed  Google Scholar 

  • Takatsuji H, Mikami T, Urasawa K, Teranishi J, Onozuka H, Takagi C, Makita Y, Matsuo H, Kusuoka H, Kitabatake A (1996) A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of left ventricular filling flow propagation by color m-mode Doppler echocardiography. J Am Coll Cardiol 27:365–371

    Article  CAS  PubMed  Google Scholar 

  • Taylor TW, Yamaguchi T (1995a) Flow patterns in three-dimensional left ventricular systolic and diastolic flows determined from computational fluid dynamics. Biorheology 32:61–71

    CAS  PubMed  Google Scholar 

  • Taylor TW, Yamaguchi T (1995b) Realistic three-dimensional left ventricular ejection determined from computational fluid dynamics. Med Eng Phys 17:602–608

    Article  CAS  PubMed  Google Scholar 

  • Verdonck P, Vierendeels J, Riemslagh K, Dick E (1999) Left-ventricular pressure gradients: a computer-model simulation. Med Biol Eng Comput 37:511–516

    CAS  PubMed  Google Scholar 

  • Vierendeels JA, Riemslagh K, Dick E, Verdonck PR (2000) Computer simulation of intraventricular flow and pressure gradients during diastole. J Biomech Eng 122:667–674

    Article  CAS  PubMed  Google Scholar 

  • Yellin EL, Nikolic SD, Frater RW (1990) Left ventricular filling dynamics and diastolic function. Prog Cardiovasc Dis 32:247–271

    CAS  Google Scholar 

  • Yellin EL, Nikolic SD, Frater RW (1994) Left ventricular diastolic function and mitral valve flow. J Heart Valve Dis 3:41–44

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by a Research Grant for Cardiovascular Diseases (12C-12) from the Ministry of Health and Welfare of Japan and a Grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aid for Scientific Research (B), No. 13480284, 2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Wada, S., Mikami, T. et al. Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color M-mode Doppler echocardiograms. Biomech Model Mechanobiol 2, 59–72 (2003). https://doi.org/10.1007/s10237-003-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-003-0028-1

Keywords

Navigation