Skip to main content
Log in

Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The key parameters determining the elastic properties of an unidirectional mineralized bone fibril-array decomposed in two further hierarchical levels are investigated using mean field methods. Modeling of the elastic properties of mineralized micro- and nanostructures requires accurate information about the underlying topology and the constituents’ material properties. These input data are still afflicted by great uncertainties and their influence on computed elastic constants of a bone fibril-array remains unclear. In this work, mean field methods are applied to model mineralized fibrils, the extra-fibrillar matrix and the resulting fibril-array. The isotropic or transverse isotropic elastic constants of these constituents are computed as a function of degree of mineralization, mineral distribution between fibrils and extra-fibrillar matrix, collagen stiffness and fibril volume fraction. The linear sensitivity of the elastic constants was assessed at a default set of the above parameters. The strain ratios between the constituents as well as the axial and transverse indentation moduli of the fibril-array were calculated for comparison with experiments. Results indicate that the degree of mineralization and the collagen stiffness dominate fibril-array elasticity. Interestingly, the stiffness of the extra-fibrillar matrix has a strong influence on transverse and shear moduli of the fibril-array. The axial strain of the intra-fibrillar mineral platelets is 30–90% of the applied fibril strain, depending on mineralization and collagen stiffness. The fibril-to-fibril-array strain ratio is essentially ~1. This study provides an improved insight in the parameters, which govern the fibril-array stiffness of mineralized tissues such as bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiva U, Wagner H, Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci 33(6): 1497–1509

    Article  Google Scholar 

  • Akkus O (2005) Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model. J Biomech Eng 127(3): 383–390

    Article  Google Scholar 

  • Benveniste Y (1987) A new approach to the application of mori-tanaka’s theory in composite materials. Mech Mater 6: 147–157

    Article  Google Scholar 

  • Birk D, Zycband E, Woodruff S, Winkelmann D, Trelstad R (1997) Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev Dyn 208(3): 291–298

    Article  Google Scholar 

  • Cribb A, Scott J (1995) Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon. J Anat 187(Pt.2): 423–428

    Google Scholar 

  • Currey J (1969) The mechanical consequences of variation in the mineral content of bone. J Biomech 2(1): 1–11

    Article  Google Scholar 

  • Currey J (2004) Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J Biomech 37(4): 549–556

    Article  Google Scholar 

  • Cusack S, Miller A (1979) Determination of the elastic constants of collagen by brillouin light scattering. J Mol Biol 135(1): 39–51

    Article  Google Scholar 

  • Ebenstein D, Pruitt L (2006) Nanoindentation of biological materials. Nano Today 1(3): 26–33

    Article  Google Scholar 

  • Eppell S, Tong W, Katz J, Kuhn L, Glimcher M (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19(6): 1027–1034

    Article  Google Scholar 

  • Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A Math Phys Sci 241(1226): 376–396

    Article  MathSciNet  MATH  Google Scholar 

  • Fantner G, Adams J, Turner P, Thurner P, Fisher L, Hansma P (2007) Nanoscale ion mediated networks in bone:  osteopontin can repeatedly dissipate large amounts of energy. Nano Lett 7(8): 2491–2498

    Article  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8): 1263–1334

    Article  Google Scholar 

  • Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14: 2115–2123

    Article  Google Scholar 

  • Fritsch A, Hellmich C (2007) ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4): 597–620

    Article  Google Scholar 

  • Fritsch A, Hellmich C, Dormieux L (2009) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260(2): 230–252

    Article  Google Scholar 

  • Giraud-Guille M (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42(3): 167–180

    Article  Google Scholar 

  • Gupta H, Wagermaier W, Zickler G, Raz-BenAroush D, Funari S, Roschger P, Wagner H, Fratzl P (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5(10): 2108–2111

    Article  Google Scholar 

  • Gupta H, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA 103(47): 17,741–17,746

    Article  Google Scholar 

  • Hansma PK, Fantner GE, Kindt JH, Thurner PJ, Schitter G, Turner PJ, Udwin SF, Finch MM (2005) Sacrificial bonds in the interfibrillar matrix of bone. J Musculoskelet Neuronal Interact 5(4): 313–315

    Google Scholar 

  • Hellmich C, Ulm F (2002) Micromechanical model for ultrastructural stiffness of mineralized tissues. J Engrg Mech 128(8): 898–908

    Article  Google Scholar 

  • Hellmich C, Barthlmy J, Dormieux L (2004) Mineral-collagen interactions in elasticity of bone ultrastructure—a continuum micromechanics approach. Eur J Mech A/Solids 23(5): 783–810

    Article  MATH  Google Scholar 

  • Hengsberger S, Kulik A, Zysset P (2002) Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30(1): 178–184

    Article  Google Scholar 

  • Hengsberger S, Enstroem J, Peyrin F, Zysset P (2003) How is the indentation modulus of bone tissue related to its macroscopic elastic response? a validation study. Journal of Biomechanics 36(10): 1503–1509

    Article  Google Scholar 

  • Hofmann T, Heyroth F, Meinhard H, Frnzel W, Raum K (2006) Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. J Biomech 39(12): 2282–2294

    Article  Google Scholar 

  • Jaeger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4): 1737–1746

    Article  Google Scholar 

  • Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52(9): 1963–1990

    Article  MATH  Google Scholar 

  • Katz JL, Meunier A (1993) Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae. J Biomech Eng 115(4B): 543–548

    Article  Google Scholar 

  • Kotha SP, Kotha S, Guzelsu N (2000) A shear-lag model to account for interaction effects between inclusions in composites reinforced with rectangular platelets. Compos Sci Technol 60(11): 2147–2158

    Article  Google Scholar 

  • Landis W, Silver F (2002) The structure and function of normally mineralizing avian tendons. Comp Biochem Physiol A Mol Integr Physiol 133(4): 1135–1157

    Article  Google Scholar 

  • Lees S (1979) A model for the distribution of hap crystallites in bonean hypothesis. Calcif Tissue Int 27(1): 53–56

    Article  Google Scholar 

  • Lees S (1987) Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connect Tissue Res 16(4): 281–303

    Article  Google Scholar 

  • Lees S, Prostak KS, Ingle VK, Kjoller K (1994) The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif Tissue Int 55(3): 180–189

    Article  Google Scholar 

  • Mori T (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Met 21(5): 571–574

    Article  Google Scholar 

  • Nikolov S, Raabe D (2008) Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J 94(11): 4220–4232

    Article  Google Scholar 

  • Orgel J, Irving T, Miller A, Wess T (2006) Microfibrillar structure of type i collagen in situ. Proc Natl Acad Sci U S A 103(24): 9001–9005

    Article  Google Scholar 

  • Prostak KS, Lees S (1996) Visualization of crystal-matrix structure. In situ demineralization of mineralized turkey leg tendon and bone. Calcif Tissue Int 59(6): 474–479

    Google Scholar 

  • Raspanti M, Congiu T, Guizzardi S (2002) Structural aspects of the extracellular matrix of the tendon : an atomic force and scanning electron microscopy study. Arch Histol Cytol 65(1): 37–43

    Article  Google Scholar 

  • Rho J, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2): 92–102

    Article  Google Scholar 

  • Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18(20): 1325–1330

    Article  Google Scholar 

  • van der Rijt J, van der Werf K, Bennink M, Dijkstra P, Feijen J (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6(9): 697–702

    Article  Google Scholar 

  • Roessle R (1927) Untersuchungen ueber knochenhaerte. Beitr Pathol Anat 77: 174–208

    Google Scholar 

  • Sasaki N, Odajima S (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29(9): 1131–1136

    Article  Google Scholar 

  • Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) Atomic force microscopic studies on the structure of bovine femoral cortical bone at the collagen fibril-mineral level. J Mater Sci Mater Med 13(3): 333–337

    Article  Google Scholar 

  • Silver F, Freeman J, Seehra G (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36(10): 1529–1553

    Article  Google Scholar 

  • Su X, Sun K, Cui FZ, Landis WJ (2003) Organization of apatite crystals in human woven bone. Bone 32(2): 150–162

    Article  Google Scholar 

  • Swadener J, Pharr G (2001) Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos Mag A 81(20): 447–466

    Article  Google Scholar 

  • Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Pol Compos 5(4): 327–333

    Article  Google Scholar 

  • Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1(1): 1–5

    Article  Google Scholar 

  • Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6(3): 879–885

    Google Scholar 

  • Weiner S, Wagner H (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1): 271–298

    Article  Google Scholar 

  • Weiner S, Arad T, Sabanay I, Traub W (1997) Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. Bone 20(6): 509–514

    Article  Google Scholar 

  • Weiner S, Traub W, Wagner H (1999) Lamellar bone: structure-function relations. J Struct Biol 126(3): 241–255

    Article  Google Scholar 

  • Withers PJ (1989) The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philos Mag A 59(4): 759–781

    Article  Google Scholar 

  • Yao H, Ouyang L, Ching W (2007) Ab initio calculation of elastic constants of ceramic crystals. J Am Ceram Soc 90(10): 3194–3204

    Article  Google Scholar 

  • Yoon Y, Cowin S (2008) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7(1): 1–11

    Article  Google Scholar 

  • Zysset P, Guo X, Hoffler C, Moore K, Goldstein S (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32(10): 1005–1012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas G. Reisinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisinger, A.G., Pahr, D.H. & Zysset, P.K. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol 9, 499–510 (2010). https://doi.org/10.1007/s10237-010-0190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0190-1

Keywords

Navigation