Skip to main content

Advertisement

Log in

The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The biomechanics of the optic nerve head is assumed to play an important role in ganglion cell loss in glaucoma. Organized collagen fibrils form complex networks that introduce strong anisotropic and nonlinear attributes into the constitutive response of the peripapillary sclera (PPS) and lamina cribrosa (LC) dominating the biomechanics of the optic nerve head. The recently presented computational remodeling approach (Grytz and Meschke in Biomech Model Mechanobiol 9:225–235, 2010) was used to predict the micro-architecture in the LC and PPS, and to investigate its impact on intraocular pressure–related deformations. The mechanical properties of the LC and PPS were derived from a microstructure-oriented constitutive model that included the stretch-dependent stiffening and the statistically distributed orientations of the collagen fibrils. Biomechanically induced adaptation of the local micro-architecture was captured by allowing collagen fibrils to be reoriented in response to the intraocular pressure–related loading conditions. In agreement with experimental observations, the remodeling algorithm predicted the existence of an annulus of fibrils around the scleral canal in the PPS, and a predominant radial orientation of fibrils in the periphery of the LC. The peripapillary annulus significantly reduced the intraocular pressure–related expansion of the scleral canal and shielded the LC from high tensile stresses. The radial oriented fibrils in the LC periphery reinforced the LC against transversal shear stresses and reduced LC bending deformations. The numerical approach presents a novel and reasonable biomechanical explanation of the spatial orientation of fibrillar collagen in the optic nerve head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol 13: 771–783

    Google Scholar 

  • Başar Y, Grytz R (2004) Incompressibility at large strains and finite-element implementation. Acta Mechanica 168: 75–101

    Article  MATH  Google Scholar 

  • Boote C, Sorensen T, Coudrillier B, Myers K, Meek K, Quigley H, Nguyen T (2010) Posterior scleral collagen architecture in normal and glaucoma human eyes, as determined using wide-angle x-ray scattering. ARVO Abstract 51: 4900

    Google Scholar 

  • Burgoyne CF, Downs JC, Bellezza A, Suh JF, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Progr Ret Eye Res 24: 39–73

    Article  Google Scholar 

  • Curtin BJ, Iwamoto T, Renaldo DP (1979) Normal and staphylomatous sclera of high myopia. Arch Ophthalmol 97(5): 912–915

    Google Scholar 

  • Dongqi H, Zeqin R (1999) A biomathematical model for pressure-dependent lamina cribrosa behavior. J Biomech 32(6): 579–584

    Article  Google Scholar 

  • Downs JC, Suh JK, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT (2003) Viscoelastic characterization of peripapillary sclera: Material properties by quadrant in rabbit and monkey eyes. J Biom Eng 125: 124–131

    Article  Google Scholar 

  • Downs JC, Suh JK, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF (2005) Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 46: 540–546

    Article  Google Scholar 

  • Gaasterland D, Tanishima T, Kuwabara T (1978) Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci 17(9): 838–846

    Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6): 15–35

    Article  Google Scholar 

  • Girard MJA, Downs JC, Bottlang M, Burgoyne CF, Suh J-KF (2009a) Peripapillary and posterior scleral mechanics–Part II: Experimental and inverse finite element characterization. J Biom Eng 131(5): 051012

    Article  Google Scholar 

  • Girard MJA, Downs JC, Burgoyne CF, Suh J-KF (2009b) Peripapillary and posterior scleral mechanics—Part I: development of an anisotropic hyperelastic constitutive model. J Biom Eng 131(5): 051011

    Article  Google Scholar 

  • Girard MJA, Suh J-KF, Bottlang M, Burgoyne CF, Downs JC (2009) Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 50(11): 5226–5237

    Article  Google Scholar 

  • Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4): 352–363

    Article  Google Scholar 

  • Goldbaum MH, Jeng SY, Logemann R, Weinreb RN (1989) The extracellular matrix of the human optic nerve. Arch Ophthalmol 107(8): 1225–1231

    Google Scholar 

  • Grytz R (2008) Computational modeling and remodeling of human eye tissues as biomechanical structures at multiple scales. Ph.D. thesis, Ruhr-University Bochum, Germany

  • Grytz R, Meschke G (2009) Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mat 2(5): 522– 533

    Article  Google Scholar 

  • Grytz R, Meschke G (2010) A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol 9: 225–235

    Article  Google Scholar 

  • Hariton I, de Botton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3): 163–175

    Article  Google Scholar 

  • Hernandez MR, Gong H (1996) Extracellular matrix of the trabecular meshwork and optic nerve head. In: Ritch R, Shields M, Krupin T (eds) The glaucomas: basic sciences, Ch 11. Mosby-Year Book, St Louis, pp 213–249

    Google Scholar 

  • Hernandez MR, Luo XX, Igoe F, Neufeld AH (1987) Extracellular matrix of the human lamina cribrosa. Am J Ophthalmol 104: 567–576

    Google Scholar 

  • Holzapfel G (2000) Nonlinear solid mechanics. A continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solids Struc 41: 3833–3848

    Article  MathSciNet  MATH  Google Scholar 

  • Jonas J, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular pressure and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45: 2660–2665

    Article  Google Scholar 

  • Lampert PW, Vogel MH, Zimmerman LE (1968) Pathology of the optic nerve in experimental acute glaucoma. Invest Ophthalmol 7: 199–213

    Google Scholar 

  • Lanchares E, Calvo B, Cristóbal J, Doblaré M (2008) Finite element simulation of arcuates for astigmatism correction. J Biomech 41: 797–805

    Article  Google Scholar 

  • Marshall GE, Konstas AG, Lee WR (1993) Collagens in the aged human macular sclera. Curr Eye Res 12: 143–153

    Article  Google Scholar 

  • Minckler DS (1980) The organization of nerve fiber bundles in the primate optic nerve head. Arch Ophthalmol 98: 1630–1636

    Google Scholar 

  • Minckler DS, Bunt AH, Johanson GW (1977) Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci 16: 426–441

    Google Scholar 

  • Morrison JC, L’Hernault NL, Jerdan JA, Quigley HA (1989) Ultrastructural location of extracellular matrix components in the optic nerve head. Arch Ophthalmol 107(1): 123–129

    Google Scholar 

  • Pandolfi A, Manganiello F (2006) A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol 5(4): 237–246

    Article  Google Scholar 

  • Pinsky PM, Datye DV (1991) A microstructurally-based finite element model of the incised human cornea. J Biomech 24(10): 907–922

    Article  Google Scholar 

  • Pinsky PM, van der Heide D, Chernyak D (2005) Computational modeling of the mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 31: 136–145

    Article  Google Scholar 

  • Quigley HA, Addicks EM (1980) Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci 19(2): 137–152

    Google Scholar 

  • Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99: 635–649

    Google Scholar 

  • Quigley HA, Anderson DR (1976) The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol 15: 606–616

    Google Scholar 

  • Quigley HA, Brown AE, Dorman-Pease ME (1991) Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol 75: 552–557

    Article  Google Scholar 

  • Radius RL, Anderson DR (1979a) The course of axons through the retina and optic nerve head. Arch Ophthalmol 97: 1154–1158

    Google Scholar 

  • Radius RL, Anderson DR (1979b) The histology of retinal nerve fiber layer bundles and bundle defects. Arch Ophthalmol 97: 948–950

    Google Scholar 

  • Radius RL, Anderson DR (1981) Rapid axonal transport in primate optic nerve. Distribution of pressure-induced interruption. Arch Ophthalmol 99: 650–659

    Google Scholar 

  • Ricken T, Schwarza A, Bluhm J (2007) A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput Mat Sc 39: 124–136

    Article  Google Scholar 

  • Roberts MD, Grau V, Grimm J, Reynaud J, Bellezza AJ, Burgoyne CF, Downs JC (2009) Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Invest Ophthalmol Vis Sci 50(2): 681–690

    Article  Google Scholar 

  • Roberts MD, Liang Y, Sigal IA, Grimm J, Reynaud J, Bellezza A, Burgoyne CF, Downs JC (2010a) Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest Ophthalmol Vis Sci 51(1): 295–307

    Article  Google Scholar 

  • Roberts MD, Sigal IA, Liang Y, Burgoyne CF, Downs JC (2010b) Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest Ophthalmol Vis Sci (in press)

  • Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struc 40: 401–445

    Article  MATH  Google Scholar 

  • Sigal IA (2009) Interactions between geometry and mechanical properties on the optic nerve head. Invest Ophthalmol Vis Sci 50(6): 2785–2795

    Article  MathSciNet  Google Scholar 

  • Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46(11): 4189–4199

    Article  Google Scholar 

  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45: 4378–4387

    Article  Google Scholar 

  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2007) Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res 85: 312–322

    Article  Google Scholar 

  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2009a) Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomech Model Mechanobiol 8(2): 85–98

    Article  Google Scholar 

  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2009b) Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Biomech Model Mechanobiol 8(2): 99–109

    Article  Google Scholar 

  • Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biom Eng 123: 528–535

    Article  Google Scholar 

  • Thale A, Tillmann B, Rochels R (1996) SEM studies of the collagen architecture of the human lamina cribrosa: Normal and pathological findings. Ophthalmologica 210: 142–147

    Article  Google Scholar 

  • Thornton IL, Dupps WJ, Roy AS, Krueger RR (2009) Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking. Invest Ophthalmol Vis Sci 50(3): 1227–1233

    Article  Google Scholar 

  • Vena P, Gastaldi D, Socci L, Pennati G (2008) An anisotropic model for tissue growth and remodeling during early development of cerebral aneurysms. Comput Mat Sc 43(3): 565–577

    Article  Google Scholar 

  • Winkler M, Jester B, Nien-Shy C, Massei S, Minckler DS, Jester JV, Brown DJ (2010) High resolution three dimensional reconstruction of the collagenous matrix of the human optic nerve head. Brain Res Bul 81(3): 339–348

    Article  Google Scholar 

  • Woo SL, Kobayashi AS, Lawrence C, Schlegel WA (1971) Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Ann Biomed Eng 1: 87–98

    Article  Google Scholar 

  • Woo SL, Kobayashi AS, Schlegel WA, Lawrence C (1972) Non-linear material properties of intact cornea and sclera. Exp Eye Res 14: 29–39

    Article  Google Scholar 

  • Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007) 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci 48(10): 4597–4607

    Article  Google Scholar 

  • Yang H, Downs JC, Sigal IA, Roberts MD, Thompson H, Burgoyne CF (2009) Deformation of the normal monkey optic nerve head connective tissue following acute iop elevation within 3-D histomorphometric reconstructions. Invest Ophthalmol Vis Sci 50(12): 5785–5799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Grytz.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MOV 22,739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grytz, R., Meschke, G. & Jonas, J.B. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol 10, 371–382 (2011). https://doi.org/10.1007/s10237-010-0240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0240-8

Keywords

Navigation