Skip to main content
Log in

Biomechanics of meniscus cells: regional variation and comparison to articular chondrocytes and ligament cells

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Central to understanding mechanotransduction in the knee meniscus is the characterization of meniscus cell mechanics. In addition to biochemical and geometric differences, the inner and outer regions of the meniscus contain cells that are distinct in morphology and phenotype. This study investigated the regional variation in meniscus cell mechanics in comparison with articular chondrocytes and ligament cells. It was found that the meniscus contains two biomechanically distinct cell populations, with outer meniscus cells being stiffer (1.59 ± 0.19 kPa) than inner meniscus cells (1.07 ± 0.14 kPa). Additionally, it was found that both outer and inner meniscus cell stiffnesses were similar to ligament cells (1.32 ± 0.20 kPa), and articular chondrocytes showed the highest stiffness overall (2.51 ± 0.20 kPa). Comparison of compressibility characteristics of the cells showed similarities between articular chondrocytes and inner meniscus cells, as well as between outer meniscus cells and ligament cells. These results show that cellular biomechanics vary regionally in the knee meniscus and that meniscus cells are biomechanically similar to ligament cells. The mechanical properties of musculoskeletal cells determined in this study may be useful for the development of mathematical models or the design of experiments studying mechanotransduction in a variety of soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MC:

Meniscus cell

FAK:

Focal adhesion kinase

AFM:

Atomic force microscopy

GAG:

Glycosaminoglycan

References

  • Aspden RM, Yarker YE, Hukins DW (1985) Collagen orientations in the meniscus of the knee joint. J Anat 140(Pt 3): 371–380

    Google Scholar 

  • Aufderheide AC, Athanasiou KA (2006) A direct compression stimulator for articular cartilage and meniscal explants. Ann Biomed Eng 34: 1463–1474

    Article  Google Scholar 

  • Cao L, Guilak F, Setton LA (2011) Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology. Biomech Model Mechanobiol 10: 1–10

    Article  MATH  Google Scholar 

  • Darling EM, Topel M, Zauscher S, Vail TP, Guilak F (2008) Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41: 454–464

    Article  Google Scholar 

  • Darling EM, Wilusz RE, Bolognesi MP, Zauscher S, Guilak F (2010) Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Biophys J 98: 2848–2856

    Article  Google Scholar 

  • Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential. Biophys J 92: 1784–1791

    Article  Google Scholar 

  • Darling EM, Zauscher S, Guilak F (2006) Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr Cartil 14: 571–579

    Article  Google Scholar 

  • Feng Y, Ofek G, Choi DS, Wen J, Hu J, Zhao H, Zu Y, Athanasiou KA, Chang CC (2010) Unique biomechanical interactions between myeloma cells and bone marrow stroma cells. Prog Biophys Mol Biol 103: 148–156

    Article  Google Scholar 

  • Fithian DC, Kelly MA, Mow VC (1990) Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res 19–31

  • Gabrion A, Aimedieu P, Laya Z, Havet E, Mertl P, Grebe R, Laude M (2005) Relationship between ultrastructure and biomechanical properties of the knee meniscus. Surg Radiol Anat 27: 507–510

    Article  Google Scholar 

  • Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269: 781–786

    Article  Google Scholar 

  • Guilak F, Ting-Beall HP, Baer AE, Trickey WR, Erickson GR, Setton LA (1999) Viscoelastic properties of intervertebral disc cells. Identification of two biomechanically distinct cell populations. Spine (Phila Pa 1976) 24: 2475–2483

    Article  Google Scholar 

  • Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33: 15–22

    Article  Google Scholar 

  • Ikai A (2009) A review on: atomic force microscopy applied to nano-mechanics of the cell. Adv Biochem Eng Biotechnol

  • Kim E, Guilak F, Haider MA (2010) An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. J Biomech Eng 132: 031011

    Article  Google Scholar 

  • Koay EJ, Ofek G, Athanasiou KA (2008) Effects of TGF-beta1 and IGF-I on the compressibility, biomechanics, and strain-dependent recovery behavior of single chondrocytes. J Biomech 41: 1044–1052

    Article  Google Scholar 

  • Koay EJ, Shieh AC, Athanasiou KA (2003) Creep indentation of single cells. J Biomech Eng 125: 334–341

    Article  Google Scholar 

  • Leipzig ND, Athanasiou KA (2008) Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys J 94: 2412–2422

    Article  Google Scholar 

  • Leipzig ND, Athanasiou KA (2005) Unconfined creep compression of chondrocytes. J Biomech 38: 77–85

    Article  Google Scholar 

  • Leipzig ND, Eleswarapu SV, Athanasiou KA (2006) The effects of TGF-beta1 and IGF-I on the biomechanics and cytoskeleton of single chondrocytes. Osteoarthr Cartil 14: 1227–1236

    Article  Google Scholar 

  • McDermott ID, Sharifi F, Bull AM, Gupte CM, Thomas RW, Amis AA (2004) An anatomical study of meniscal allograft sizing. Knee Surg Sports Traumatol Arthrosc 12: 130–135

    Article  Google Scholar 

  • McDevitt CA, Webber RJ (1990) The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res 8–18

  • Ofek G, Willard VP, Koay EJ, Hu JC, Lin P, Athanasiou KA (2009) Mechanical characterization of differentiated human embryonic stem cells. J Biomech Eng 131: 061011

    Article  Google Scholar 

  • Ofek G, Wiltz DC, Athanasiou KA (2009) Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells. Biophys J 97: 1873–1882

    Article  Google Scholar 

  • Shieh AC, Athanasiou KA (2007) Dynamic compression of single cells. Osteoarthr Cartil 15: 328–334

    Article  Google Scholar 

  • Shieh AC, Koay EJ, Athanasiou KA (2006) Strain-dependent recovery behavior of single chondrocytes. Biomech Model Mechanobiol 5: 172–179

    Article  Google Scholar 

  • Shin D, Athanasiou K (1999) Cytoindentation for obtaining cell biomechanical properties. J Orthop Res 17: 880–890

    Article  Google Scholar 

  • Skaggs DL, Warden WH, Mow VC (1994) Radial tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res 12: 176–185

    Article  Google Scholar 

  • Sweigart MA, Athanasiou KA (2005) Tensile and compressive properties of the medial rabbit meniscus. Proc Inst Mech Eng H 219: 337–347

    Google Scholar 

  • Sweigart MA, Zhu CF, Burt DM, DeHoll PD, Agrawal CM, Clanton TO, Athanasiou KA (2004) Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann Biomed Eng 32: 1569–1579

    Article  Google Scholar 

  • Theret DP, Levesque MJ, Sato M, Nerem RM, Wheeler LT (1988) The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng 110: 190–199

    Article  Google Scholar 

  • Upton ML, Chen J, Guilak F, Setton LA (2003) Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21: 963–969

    Article  Google Scholar 

  • Upton ML, Gilchrist CL, Guilak F, Setton LA (2008) Transfer of macroscale tissue strain to microscale cell regions in the deformed meniscus. Biophys J 95: 2116–2124

    Article  Google Scholar 

  • Upton ML, Guilak F, Laursen TA, Setton LA (2006) Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus. Biomech Model Mechanobiol 5: 140–149

    Article  Google Scholar 

  • Upton ML, Hennerbichler A, Fermor B, Guilak F, Weinberg JB, Setton LA (2006) Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect Tissue Res 47: 207–214

    Article  Google Scholar 

  • Valiyaveettil M, Mort JS, McDevitt CA (2005) The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint. Connect Tissue Res 46: 83–91

    Article  Google Scholar 

  • Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 184–192.

  • Walker PS, Hajek JV (1972) The load-bearing area in the knee joint. J Biomech 5: 581–589

    Article  Google Scholar 

  • You HX, Yu L (1999) Atomic force microscopy imaging of living cells: progress, problems and prospects. Methods Cell Sci 21: 1–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Adams, J., Athanasiou, K.A. Biomechanics of meniscus cells: regional variation and comparison to articular chondrocytes and ligament cells. Biomech Model Mechanobiol 11, 1047–1056 (2012). https://doi.org/10.1007/s10237-012-0372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0372-0

Keywords

Navigation