Skip to main content

Advertisement

Log in

A mechanobiological model of orthodontic tooth movement

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Orthodontic tooth movement is achieved by the process of repeated alveolar bone resorption on the pressure side and new bone formation on the tension side. In order to optimize orthodontic treatment, it is important to identify and study the biological processes involved. This article presents a mechanobiological model using partial differential equations to describe cell densities, growth factor concentrations, and matrix densities occurring during orthodontic tooth movement. We hypothesize that such a model can predict tooth movement based on the mechanobiological activity of cells in the PDL. The developed model consists of nine coupled non-linear partial differential equations, and two distinct signaling pathways were modeled: the RANKL–RANK–OPG pathway regulating the communication between osteoblasts and osteoclasts and the TGF-β pathway mediating the differentiation of mesenchymal stem cells into osteoblasts. The predicted concentrations and densities were qualitatively validated by comparing the results to experiments reported in the literature. In the current form, the model supports our hypothesis, as it is capable of conceptually simulating important features of the biological interactions in the alveolar bone—PDL complex during orthodontic tooth movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcañiz M, Montserrat C, Grau V, Chinesta F, Ramón A, Albalat S (1998) An advanced system for the simulation and planning of orthodontic treatment. Med Image Anal 2: 61–77

    Article  Google Scholar 

  • Bailón-Plaza A, van der Meulen MC (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212: 191–209

    Article  Google Scholar 

  • Baumrind S (1969) A reconsideration of the property of the “pressure-tension” hypothesis. Am J Orthod 55: 12–22

    Article  Google Scholar 

  • Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13: 20–40

    Article  Google Scholar 

  • Bonewald LF (2006) Mechanosensation and transduction in Osteocytes. Bonekey Osteovision 3: 7–15

    Article  Google Scholar 

  • Bourauel C, Freudenreich D, Vollmer D, Kobe D, Drescher D, Jäger A (1999) Simulation of orthodontic tooth movements. A comparison of numerical models. J Orofac Orthop 60: 136–151

    Article  Google Scholar 

  • Bourauel C, Vollmer D, Jäger A (2000) Application of bone remodeling theories in the simulation of orthodontic tooth movements. J Orofac Orthop 61: 266–279

    Article  Google Scholar 

  • Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12: 1260–1268

    Article  Google Scholar 

  • Carano A, Siciliano G (1996) Effects of continuous and intermittent forces on human fibroblasts in vitro. Eur J Orthod 18: 19–26

    Article  Google Scholar 

  • Chiquet M, Renedo AS, Huber F, Flück M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production. Matrix Biol 22: 73–80

    Article  Google Scholar 

  • Dahl J, Li J, Bring DKI, Renström P, Ackermann P (2007) Intermittent pneumatic compression enhances neurovascular ingrowth and tissue proliferation during connective tissue healing: a study in the rat. J Orthop Res 25: 1185–1192

    Article  Google Scholar 

  • Dunn MD, Park CH, Kostenuik PJ, Kapila S, Giannobile W (2007) Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone 41: 446–455

    Article  Google Scholar 

  • Everts V, Korper W, Niehof A, Jansen I, Beertsen W (1995) Type VI collagen is phagocytosed by fibroblasts and digested in the lysosomal apparatus: involvement of collagenase, serine proteinases and lysosomal enzymes. Matrix Biol 14: 665–676

    Article  Google Scholar 

  • Frost HM (1988) Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int 42: 145–156

    Article  Google Scholar 

  • Fujihara S, Yokozeki M, Oba Y, Higashibata Y, Nomura S, Moriyama K (2006) Function and regulation of osteopontin in response to mechanical stress. J Bone Miner Res 21: 956–964

    Article  Google Scholar 

  • Gao J, Symons AL, Bartold PM (1998) Expression of transforming growth factor-beta1 (TGF-beta1) in the developing periodontium of rats. J Dent Res 77: 1708–1716

    Article  Google Scholar 

  • Garant PR (1976) Collagen resorption by fibroblasts. A theory of fibroblastic maintenance of the periodontal ligament. J Periodontol 47: 380–390

    Article  Google Scholar 

  • Garant PR (2003) Oral cells and tissues. Quintessence Publishing Co. Ltd., New Malden, Surrey, UK

    Google Scholar 

  • Garlet TP, Coelho U, Silva JS, Garlet PG (2007) Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115: 355–362

    Article  Google Scholar 

  • Garlet TP, Coelho U, Repeke CE, Silva JS, de Queiroz Cunha F, Garlet PG (2008) Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine 42: 330–335

    Article  Google Scholar 

  • Geris L, Gerisch A, Sloten J, Weiner R, Oosterwyck H (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 251: 137–158

    Article  MathSciNet  Google Scholar 

  • Gerisch A, Chaplain MAJ (2006) Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems. Math Comput Model 43: 49–75

    Article  MathSciNet  MATH  Google Scholar 

  • Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250: 684–704

    Article  MathSciNet  Google Scholar 

  • Grimm FM (1972) Bone bending, a feature of orthodontic tooth movement. Am J Orthod 62: 384–393

    Article  Google Scholar 

  • Henneman S, den Hoff JWV, Maltha JC (2008) Mechanobiology of tooth movement. Eur J Orthod 30: 299–306

    Article  Google Scholar 

  • Houde N, Chamoux E, Bisson M, Roux S (2009) Transforming growth factor-beta1 induces human osteoclast apoptosis by up-regulating Bim. J Biol Chem 284: 23397–23404

    Article  Google Scholar 

  • Isaacson KG, Muir JD, Reed RT (2003) Removable orthodontic appliances. Wright, Bristol, UK

    Google Scholar 

  • Ivanovski S, Gronthos S, Shi S, Bartold PM (2006) Stem cells in the periodontal ligament. Oral Dis 12: 358–363

    Article  Google Scholar 

  • Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, Takahashi N, Suda T (1996) Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology 137: 90–2187

    Article  Google Scholar 

  • Kameda T, Mano H, Yuasa T, Mori Y, Miyazawa K, Shiokawa M, Nakamaru Y, Hiroi E, Hiura K, Kameda A, Yang NN, Hakeda Y, Kumegawa M (1997) Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186: 489–495

    Article  Google Scholar 

  • Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17: 210–220

    Article  Google Scholar 

  • Kawakami M, Takano-Yamamoto T (2004) Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab 22: 541–546

    Article  Google Scholar 

  • Kawarizadeh A, Bourauel C, Zhang D, Götz W, Jäger A (2004) Correlation of stress and strain profiles and the distribution of osteoclastic cells induced by orthodontic loading in rat. Eur J Oral Sci 112: 140–147

    Article  Google Scholar 

  • Kawarizadeh A, Bourauel C, Götz W, Jäger A (2005) Early responses of periodontal ligament cells to mechanical stimulus in vivo. J Dent Res 84: 902–906

    Article  Google Scholar 

  • Kimoto S, Matsuzawa M, Matsubara S, Komatsu T, Uchimura N, Kawase T, Saito S (1999) Cytokine secretion of periodontal ligament fibroblasts derived from human deciduous teeth: effect of mechanical stress on the secretion of transforming growth factor-beta 1 and macrophage colony stimulating factor. J Periodontal Res 34: 235–243

    Article  Google Scholar 

  • King GJ, Keeling SD, Wronski J (1991) Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone 12: 401–409

    Article  Google Scholar 

  • Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol (Paris) 53: 576–580

    Article  Google Scholar 

  • Kobayashi Y, Hashimoto F, Miyamoto H, Kanaoka K, Miyazaki- Kawashita Y, Nakashima T, Shibata M, Kobayashi K, Kato Y, Sakai H (2000) Force-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J Bone Miner Res 15: 1924–1934

    Article  Google Scholar 

  • Kojima Y, Fukui H (2005) Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofac Orthop 127: 542–551

    Article  Google Scholar 

  • Kojima Y, Fukui H (2006) A numerical simulation of tooth movement by wire bending. Am J Orthod Dentofac Orthop 130: 452–459

    Article  Google Scholar 

  • Kojima Y, Fukui H, Miyajima K (2006) The effects of friction and flexural rigidity of the archwire on canine movement in sliding mechanics: a numerical simulation with a 3-dimensional finite element method. Am J Orthod Dentofac Orthop 130: 275.e1–10

    Google Scholar 

  • Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop 129: 469.e1–32

    Article  Google Scholar 

  • Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88: 597–608

    Article  Google Scholar 

  • Lawrence DA (2001) Latent-TGF-beta: an overview. Mol Cell Biochem 219: 163–170

    Article  Google Scholar 

  • Maeda S, Dean DD, Gomez R, Schwartz Z, Boyan BD (2002) The first stage of transforming growth factor beta1 activation is release of the large latent complex from the extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1 (MMP-3). Calcif Tissue Int 70: 54–65

    Article  Google Scholar 

  • Marotti G (2000) The osteocyte as a wiring transmission system. J Musculoskelet Neuronal Interact 1: 133–136

    Google Scholar 

  • Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 129: 458–468

    Article  Google Scholar 

  • McKee MD, Nanci A (1995) Osteopontin and the bone remodeling sequence. Colloidal-gold immunocytochemistry of an interfacial extracellular matrix protein. Ann N Y Acad Sci 760: 177–189

    Article  Google Scholar 

  • McKee MD, Glimcher MJ, Nanci A (1992) High-resolution immunolocalization of osteopontin and osteocalcin in bone and cartilage during endochondral ossification in the chicken tibia. Anat Rec 234: 479–492

    Article  Google Scholar 

  • Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28: 221–240

    Article  Google Scholar 

  • Melsen B (2001) Tissue reaction to orthodontic tooth movement—a new paradigm. Eur J Orthod 23: 671–681

    Article  Google Scholar 

  • Mengoni M, Ponthot J-P (2010) Isotropic continuum damage/repair model for alveolar bone remodeling. J Comput Appl Math 234: 2036–2045

    Article  MathSciNet  MATH  Google Scholar 

  • Middleton J, Jones M, Wilson A (1996) The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am J Orthod Dentofac Orthop 109: 155–162

    Article  Google Scholar 

  • Miyoshi K, Igarashi K, Saeki S, Shinoda H, Mitani H (2001) Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied. Eur J Orthod 23: 329–338

    Article  Google Scholar 

  • Natali AN, Pavan PG, Scarpa C (2004) Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament. Dent Mater 20: 623–629

    Article  Google Scholar 

  • Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K (2006) Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res 9: 63–70

    Article  Google Scholar 

  • Ogasawara T, Yoshimine Y, Kiyoshima T, Kobayashi I, Matsuo K, Akamine A, Sakai H (2004) In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue. J Periodontal Res 39: 42–49

    Article  Google Scholar 

  • Palsson BO, Bhatia S (2003) Tissue engineering. Pearson Prentice Hall Bioengineering

  • Pfeilschifter J, Diel I, Scheppach B, Bretz A, Krempien R, Erdmann J, Schmid G, Reske N, Bismar H, Seck T, Krempien B, Ziegler R (1998) Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume. J Bone Miner Res 13: 716–730

    Article  Google Scholar 

  • Pinkerton MN, Wescott DC, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC (2008) Cultured human periodontal ligament cells constitutively express multiple osteotropic cytokines and growth factors, several of which are responsive to mechanical deformation. J Periodontal Res 43: 343–351

    Article  Google Scholar 

  • Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43: 249–263

    Article  Google Scholar 

  • Provatidis CG (2001) An analytical model for stress analysis of a tooth in translation. Int J Eng Sci 39: 1361–1381

    Article  Google Scholar 

  • Roberts WE, Huja S, Roberts JA (2004) Bone modeling: biomechanics, molecular mechanisms, and clinical perspectives. Semin Orthod 10: 123–161

    Article  Google Scholar 

  • Roberts-Harry D, Sandy J (2004) Orthodontics. Part 11: orthodontic tooth movement. Br Dent J 196: 391–394

    Article  Google Scholar 

  • Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8: 455–498

    Article  Google Scholar 

  • Rody WJ, King GJ, Gu G (2001) Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am J Orthod Dentofac Orthop 120: 477–489

    Article  Google Scholar 

  • Roodman GD (1998) Osteoclast differentiation and activity. Biochem Soc Trans 26: 7–13

    Google Scholar 

  • Roodman GD (1999) Cell biology of the osteoclast. Exp Hematol 27: 1229–1241

    Article  Google Scholar 

  • Ryser MD, Nigam N, Komarova S (2009) Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit. J Bone Miner Res 24: 860–870

    Article  Google Scholar 

  • Sandberg M, Vuorio T, Hirvonen H, Alitalo K, Vuorio E (1988) Enhanced expression of TGF-beta and c-fos mRNAs in the growth plates of developing human long bones. Development 102: 461–470

    Google Scholar 

  • Schneider J, Geiger M, Sander F-G (2002) Numerical experiments on long-time orthodontic tooth movement. Am J Orthod Dentofac Orthop 121: 257–265

    Article  Google Scholar 

  • Shiotani A, Shibasaki Y, Sasaki T (2001) Localization of receptor activator of NFkappaB ligand, RANKL, in periodontal tissues during experimental movement of rat molars. J Electron Microsc (Tokyo) 50: 365–369

    Article  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Boone T, Shimamoto G, DeRose M, Elliot R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg K, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319

    Article  Google Scholar 

  • Sodek J, McKee MD (2000) Molecular and cellular biology of alveolar bone. Periodontol 2000 24: 99–126

    Article  Google Scholar 

  • Soncini M, Pietrabissa R (2002) Quantitative approach for the prediction of tooth movement during orthodontic treatment. Comput Methods Biomech Biomed Eng 5: 361–368

    Article  Google Scholar 

  • Tan SD, Kuijpers-Jagtman AM, Semeins CM, Bronckers ALJJ, Maltha JC, Vonden Hoff JW, Everts V, Klein-Nulend J (2006) Fluid shear stress inhibits TNFalpha-induced osteocyte apoptosis. J Dent Res 85: 905–909

    Article  Google Scholar 

  • Tang L, Lin Z, Ming Li Y (2006) Effects of different magnitudes of mechanical strain on Osteoblasts in vitro. Biochem Biophys Res Commun 344: 122–128

    Article  Google Scholar 

  • Teng YT, Nguyen H, Gao X, Kong YY, Gorczynski RM, Singh B, Ellen RP, Penninger JM (2000) Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest 106: R59–R67

    Article  Google Scholar 

  • Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14: 839–849

    Article  Google Scholar 

  • Vander A, Sherman J, Luciano D (1998) Human physiology: the mechanisms of body function. McGraw-Hill, Boston

    Google Scholar 

  • Vatsa A, Smit TH, Klein-Nulend J (2007) Extracellular NO signalling from a mechanically stimulated osteocyte. J Biomech 40(Suppl 1): S89–S95

    Article  Google Scholar 

  • Verna C, Dalstra M, Lee TC, Cattaneo PM, Melsen B (2004) Microcracks in the alveolar bone following orthodontic tooth movement: a morphological and morphometric study. Eur J Orthod 26: 459–467

    Article  Google Scholar 

  • Weiner R, Schmitt BA, Podhaisky H (1997) ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs. Appl Numer Math 25: 303–319

    Article  MathSciNet  MATH  Google Scholar 

  • Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC (2007) Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86: 1212–1216

    Article  Google Scholar 

  • Wise GE, King GJ (2008) Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87: 414–434

    Article  Google Scholar 

  • Xie R, Kuijpers-Jagtman AM, Maltha JC (2009) Osteoclast differentiation and recruitment during early stages of experimental tooth movement in rats. Eur J Oral Sci 117: 43–50

    Article  Google Scholar 

  • Yamaguchi M, Shimizu N, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y (1994) Effect of different magnitudes of tension force on prostaglandin E2 production by human periodontal ligament cells. Arch Oral Biol 39: 877–884

    Article  Google Scholar 

  • Yamaguchi M, Aihara N, Kojima T, Kasai K (2006) RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 85: 751–756

    Article  Google Scholar 

  • Yamashiro T, Takano-Yamamoto T (2001) Influences of ovariectomy on experimental tooth movement in the rat. J Dent Res 80: 1858–1861

    Article  Google Scholar 

  • Yokoya K, Sasaki T, Shibasaki Y (1997) Distributional changes of osteoclasts and pre-osteoclastic cells in periodontal tissues during experimental tooth movement as revealed by quantitative immunohistochemistry of H(+)-ATPase. J Dent Res 76: 580–587

    Article  Google Scholar 

  • Yoshimatsu M, Shibata Y, Kitaura H, Chang X, Moriishi T, Hashimoto F, Yoshida N, Yamaguchi A (2006) Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice. J Bone Miner Metab 24: 20–27

    Article  Google Scholar 

  • Zauli G, Melloni E, Capitani S, Secchiero P (2009) Role of full-length osteoprotegerin in tumor cell biology. Cell Mol Life Sci 66: 841–851

    Article  Google Scholar 

  • Zohar R, Cheifetz S, McCulloch CA, Sodek J (1998) Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration. Eur J Oral Sci 106(Suppl 1): 401–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Van Schepdael.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (EPS 193 kb)

ESM 2 (EPS 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Schepdael, A., Vander Sloten, J. & Geris, L. A mechanobiological model of orthodontic tooth movement. Biomech Model Mechanobiol 12, 249–265 (2013). https://doi.org/10.1007/s10237-012-0396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0396-5

Keywords

Navigation