Skip to main content
Log in

Biomechanics of early cardiac development

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Daya A, Sater AK, Wells DE, Mohun TJ, Zimmerman LB (2009) Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. Dev Biol 336(1): 20–29

    Google Scholar 

  • Avrahami I, Gharib M (2008) Computational studies of resonance wave pumping in compliant tubes. J Fluid Mech 608: 139–160

    MATH  Google Scholar 

  • Baker K, Holtzman NG, Burdine RD (2008) Direct and indirect roles for nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proc Natl Acad Sci USA 105(37): 13924–13929

    Google Scholar 

  • Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91(2): 279–288

    Google Scholar 

  • Barry A (1942) The intrinsic pulsation rates of fragments of the embryonic chick heart. J Exp Zool 91(2): 119–130

    Google Scholar 

  • Barry A (1948) The functional significance of the cardiac jelly in the tubular heart of the chick embryo. Anat Rec 102(3): 289–298

    Google Scholar 

  • Bartman T, Hove J (2005) Mechanics and function in heart morphogenesis. Dev Dyn 233(2): 373–381

    Google Scholar 

  • Benson JDW, Hughes SF, Hu N, Clark EB (1989) Effect of heart rate increase on dorsal aortic flow before and after volume loading in the stage 24 chick embryo. Pediatr Res 26(5): 438–441

    Google Scholar 

  • Biechler SV, Potts JD, Yost MJ, Junor L, Goodwin RL, Weidner JW (2010) Mathematical modeling of flow-generated forces in an in vitro system of cardiac valve development. Ann Biomed Eng 38(1): 109–117

    Google Scholar 

  • Bogue JY (1932) The heart rate of the developing chick. J Exp Biol 9: 351–358

    Google Scholar 

  • Bouman H, Broekhuizen M, Baasten A, Gittenberger-De Groot A, Wenink A (1995) Spectrum of looping disturbances in stage 34 chicken hearts after retinoic acid treatment. Anat Rec 243(1): 101–108

    Google Scholar 

  • Bremer JL (1932) The presence and influence of two spiral streams in the heart of the chick embryo. Am J Anat 49(3): 409–440

    Google Scholar 

  • Broekhuizen ML, Hogers B, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC, Wladimiroff JW (1999) Altered hemodynamics in chick embryos after extraembryonic venous obstruction. Ultrasound Obstet Gynecol 13(6): 437–445

    Google Scholar 

  • Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451(7181): 943–948

    Google Scholar 

  • Burggren WW, Keller BB (1997) Development of cardiovascular systems: molecules to organisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Butcher JT, Sedmera D, Guldberg RE, Markwald RR (2007) Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography. Dev Dyn 236(3): 802–809

    Google Scholar 

  • Chabert S, Taber LA (2002) Intramyocardial pressure measurements in the stage 18 embryonic chick heart. Am J Physiol-Heart C 282(4): H1248–H1254

    Google Scholar 

  • Challice CE, Virágh S (1974) The architectural development of the early mammalian heart. Tissue Cell 6(3): 447–462

    Google Scholar 

  • Clark EB, Hu N, Rosenquist GC (1984) Effect of conotruncal constriction on aortic-mitral valve continuity in the stage 18, 21 and 24 chick embryo. Am J Cardiol 53(2): 324–327

    Google Scholar 

  • Clark EB, Hu N, Dummett JL, Vandekieft GK, Olson C, Tomanek R (1986) Ventricular function and morphology in chick embryo from stages 18 to 29. Am J Physiol 250(3 Pt 2): H407–H413

    Google Scholar 

  • Clark EB, Hu N, Frommelt P, Vandekieft GK, Dummett JL, Tomanek RJ (1989) Effect of increased pressure on ventricular growth in stage 21 chick embryos. Am J Physiol 257(1 Pt 2): H55–H61

    Google Scholar 

  • Cohn AE (1928) Physiological ontogeny: a chicken embryos. xiii. the temperature characteristic for the contraction rate of the whole heart. J Gen Physiol 11(4): 369–375

    Google Scholar 

  • Colvee E, Hurle JM (1983) Malformations of the semilunar valves produced in chick embryos by mechanical interference with cardiogenesis. an experimental approach to the role of hemodynamics in valvular development. Anat Embryol (Berl) 168(1): 59–71

    Google Scholar 

  • Crozier WJ, Stier TJ (1927) Temperature and frequency of cardiac contractions in embryos of limulus. J Gen Physiol 10(4): 501–518

    Google Scholar 

  • Cuneo B, Hughes S, Benson JDW (1993) Heart rate perturbation in the stage 17–27 chick embryo: effect on stroke volume and aortic flow. Am J Physiol 264(3 Pt 2): H755–H759

    Google Scholar 

  • Damon BJ, Rémond MC, Bigelow MR, Trusk TC, Xie W, Perucchio R, Sedmera D, Denslow S, Thompson RP (2009) Patterns of muscular strain in the embryonic heart wall. Dev Dyn 238(6): 1535–1546

    Google Scholar 

  • de Almeida A, McQuinn T, Sedmera D (2007) Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res 100(9): 1363–1370

    Google Scholar 

  • de Jong F, Opthof T, Wilde AA, Janse MJ, Charles R, Lamers WH, Moorman AF (1992) Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res 71(2): 240–250

    Google Scholar 

  • DeGroff C, Thornburg B, Pentecost J, Thornburg K, Gharib M, Sahn D (2003) Flow in the early embryonic human heart: a numerical study. Pediatr Cardiol 24(4): 375–380

    Google Scholar 

  • Egorova A, DeRuiter M, de Boer H, van de Pas S, Gittenberger-de Groot A, van Zonneveld A, Poelmann R, Hierck B (2011) Endothelial colony-forming cells show a mature transcriptional response to shear stress. In Vitro Cell Dev B 48(1): 21–29

    Google Scholar 

  • Ettensohn CA (1985) Mechanisms of epithelial invagination. Q Rev Biol 60(3): 289–307

    Google Scholar 

  • Faber JJ, Green TJ, Thornburg KL (1974) Embryonic stroke volume and cardiac output in the chick. Dev Biol 41(1): 14–21

    Google Scholar 

  • Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson ME, Gharib M (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312(5774): 751–753

    Google Scholar 

  • Fransen M, Lemanski L (1988) Myocardial cell relationship during morphogenesis in normal and cardiac lethal mutant axolotls, ambystoma mexicanum. Am J Anat 183: 245–257

    Google Scholar 

  • Friedman S, Murphy L, Ash R (1951) Aortic atresia with hypoplasia of the left heart and aortic arch. J Pediatr 38(3): 354–368

    Google Scholar 

  • Fujimoto J (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21: 1361–1367

    Google Scholar 

  • Garita B, Jenkins MW, Han M, Zhou C, Vanauker M, Rollins AM, Watanabe M, Fujimoto JG, Linask KK (2011) Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. Am J Physiol Heart C 300(3): H879–H891

    Google Scholar 

  • Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G (1995) Aberrant neural and cardiac development in mice lacking the erbb4 neuregulin receptor. Nature 378(6555): 390–394

    Google Scholar 

  • Glaser O (1929) Temperature and heart rate in fundulus embryo. J Exp Biol 6: 325–339

    Google Scholar 

  • Goda T, Abu-Daya A, Carruthers S, Clark MD, Stemple DL, Zimmerman LB (2006) Genetic screens for mutations affecting development of Xenopus tropicalis. PLoS Genet 2(6): e91

    Google Scholar 

  • Goodwin RL, Nesbitt T, Price RL, Wells JC, Yost MJ, Potts JD (2005) Three-dimensional model system of valvulogenesis. Dev Dyn 233(1): 122–129

    Google Scholar 

  • Groenendijk B, Van der Heiden K, Hierck B, Poelmann R (2007) The role of shear stress on et-1, klf2, and nos-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology 22: 380–389

    Google Scholar 

  • Grossman TR, Gamliel A, Wessells RJ, Taghli-Lamallem O, Jepsen K, Ocorr K, Korenberg JR, Peterson KL, Rosenfeld MG, Bodmer R, Bier E (2011) Over-expression of dscam and col6a2 cooperatively generates congenital heart defects. PLoS Genet 7(11): e1002344

    Google Scholar 

  • Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195(4): 231–272

    Google Scholar 

  • Harh J, Paul M, Gallen W, Friedberg D, Kaplan S (1973) Experimental production of hypoplastic left heart syndrome in the chick embryo. Am J Cardiol 31(1): 51–56

    Google Scholar 

  • Henning AL, Jiang MX, Yalcin HC, Butcher JT (2011) Quantitative three-dimensional imaging of live avian embryonic morphogenesis via micro-computed tomography. Dev Dyn 240(8): 1949–1957

    Google Scholar 

  • Hickerson A, Rinderknecht D, Gharib M (2005) Experimental study of the behavior of a valveless impedance pump. Exp Fluids 39(4):787–787, 0723-4864

    Google Scholar 

  • Hickerson AI, Gharib M (2006) On the resonance of a pliant tube as a mechanism for valveless pumping. J Fluid Mech 555-1: 141–148

    Google Scholar 

  • Hierck BP, Van der Heiden K, Poelma C, Westerweel J, Poelmann RE (2008) Fluid shear stress and inner curvature remodeling of the embryonic heart. Choosing the right lane! Sci World J 8: 212–222

    Google Scholar 

  • Hochel J, Akiyama R, Masuko T, Pearson JT, Nichelmann M, Tazawa H (1998) Development of heart rate irregularities in chick embryos. Am J Physiol 275(2 Pt 2): H527–H533

    Google Scholar 

  • Hogers B, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE (1997) Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80(4): 473–481

    Google Scholar 

  • Hogers B, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE (1999) Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. Cardiovasc Res 41(1): 87–99

    Google Scholar 

  • Hou PC, Burggren WW (1995) Cardiac output and peripheral resistance during larval development in the anuran amphibian xenopus laevis. Am J Physiol 269(5 Pt 2): R1126–R1132

    Google Scholar 

  • Hove J (2006) Quantifying cardiovascular flow dynamics during early development. Pediatr Res 60(1): 6–13

    Google Scholar 

  • Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919): 172–177

    Google Scholar 

  • Hu N, Clark EB (1989) Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res 65(6): 1665–1670

    Google Scholar 

  • Hu N, Keller BB (1995) Relationship of simultaneous atrial and ventricular pressures in stage 16–27 chick embryos. Am J Physiol 269(4 Pt 2): H1359–H1362

    Google Scholar 

  • Hu N, Connuck DM, Keller BB, Clark EB (1991) Diastolic filling characteristics in the stage 12 to 27 chick embryo ventricle. Pediatr Res 29(4 Pt 1): 334–337

    Google Scholar 

  • Hu N, Sedmera D, Yost HJ, Clark EB (2000) Structure and function of the developing zebrafish heart. Anat Rec 260(2): 148–157

    Google Scholar 

  • Icardo J, Fernandez-Teran A (1987) Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat 130(3): 264–274

    Google Scholar 

  • Ishiwata T, Nakazawa M, Pu WT, Tevosian SG, Izumo S (2003) Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos. Circ Res 93(9): 857–865

    Google Scholar 

  • Itasaki N, Nakamura H, Sumida H, Yasuda M (1991) Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart. Anat Embryol (Berl) 183(1): 29–39

    Google Scholar 

  • Jacob E, Drexel M, Schwerte T, Pelster B (2002) Influence of hypoxia and of hypoxemia on the development of cardiac activity in zebrafish larvae. Am J Physiol-Reg I 283(4): R911–R917

    Google Scholar 

  • Jenkins M, Adler D, Gargesha M, Huber R, Rothenberg F, Belding J, Watanabe M, Wilson D, Fujimoto J, Rollins A (2007) Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser. Opt Express 15: 6251–6267

    Google Scholar 

  • Jenkins M, Chughtai O, Basavanhally A, Watanabe M, Rollins A (2007b) In vivo imaging of the embryonic heart using gated optical coherence tomography. J Biomed Opt 12:030505

    Google Scholar 

  • Jenkins M, Watanabe M, Rollins A (2012) Longitudinal imaging of heart development with optical coherence tomography. IEEE J Sel Top Quant Electron 18(3): 1166–1175

    Google Scholar 

  • Jones E, Baron M, Fraser S, Dickinson M (2004) Measuring hemodynamic changes during mammalian development. Am J Physiol Heart C 287(4): H1561–H1569

    Google Scholar 

  • Jung E (2007) A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia. Bull Math Biol 69(7): 2181–2198

    MathSciNet  MATH  Google Scholar 

  • Jung E, Peskin CS (2001) Two-dimensional simulations of valveless pumping using the immersed boundary method. SIAM J Sci Comput 23(1): 19–45

    MathSciNet  MATH  Google Scholar 

  • Kamino K, Hirota A, Fujii S (1981) Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 290(5807): 595–597

    Google Scholar 

  • Keller BB (1998) Embryonic cardiovascular function, coupling and maturation: a species view. In: Burggren W, Keller B (eds) Development of cardiovascular systems. University Press, Cambridge

    Google Scholar 

  • Keller BB, Hu N, Clark EB (1990) Correlation of ventricular area, perimeter, and conotruncal diameter with ventricular mass and function in the chick embryo from stages 12 to 24. Circ Res 66(1): 109–114

    Google Scholar 

  • Keller BB, Hu N, Serrino PJ, Clark EB (1991) Ventricular pressure-area loop characteristics in the stage 16 to 24 chick embryo. Circ Res 68(1): 226–231

    Google Scholar 

  • Keller BB, Tinney JP, Hu N (1994) Embryonic ventricular diastolic and systolic pressure–volume relations. Cardiol Young 4(01): 19–27

    Google Scholar 

  • Keller BB, MacLennan MJ, Tinney JP, Yoshigi M (1996) In vivo assessment of embryonic cardiovascular dimensions and function in day-10.5 to −14.5 mouse embryos. Circ Res 79(2): 247–255

    Google Scholar 

  • Kenner T, Moser M, Tanev I, Ono K (2000) The liebau-effect or on the optimal use of energy for the circulation of blood. Scripta Medica 73(1): 9–14

    Google Scholar 

  • Kilner PJ (2005) Valveless pump models that laid a false but fortuitous trail on the way towards the total cavopulmonary connection. Cardiol Young 15(SupplementS3): 74–79

    Google Scholar 

  • Kim JS, Min J, Recknagel AK, Riccio M, Butcher JT (2011) Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography. Anat Rec (Hoboken) 294(1): 1–10

    Google Scholar 

  • Kirchhoff S, Kim JS, Hagendorff A, Thönnissen E, Krüger O, Lamers WH, Willecke K (2000) Abnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice. Circ Res 87(5): 399–405

    Google Scholar 

  • Kowalski W, Teslovich N, Dur O, Keller B, Pekkan K (2012) Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo. Biomech Model Mechanobiol [Epub ahead of print]

  • Kunz P, Crelier GR, Schwizer W, Borovicka J, Kreiss C, Fried M, Boesiger P (1998) Gastric emptying and motility: assessment with mr imaging–preliminary observations. Radiology 207(1): 33–40

    Google Scholar 

  • Lakkis MM, Epstein JA (1998) Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development 125(22): 4359–4367

    Google Scholar 

  • Lamers W, Moorman A (2002) Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis. Circ Res 91: 93–103

    Google Scholar 

  • Latacha KS, Rémond MC, Ramasubramanian A, Chen AY, Elson EL, Taber LA (2005) Role of actin polymerization in bending of the early heart tube. Dev Dyn 233(4): 1272–1286

    Google Scholar 

  • Lee K, Simon H, Chen H, Bates B, Hung M, Hauser C (1995) Requirement for neuregulin receptor erbb2 in neural and cardiac development. Nature 378(6555): 394–398

    Google Scholar 

  • Liebau G (1954) Uber ein ventilloses pumpprinzip. Z Kreislaufforsch 41(14): 327–328

    Google Scholar 

  • Liebau G (1957) Significance of forces of inertia in the dynamics of blood circulation. Z Kreislaufforsch 46(11–12): 428–438

    Google Scholar 

  • Lin IE, Taber LA (1995) A model for stress-induced growth in the developing heart. J Biomech Eng 117: 343–349

    Google Scholar 

  • Lincoln J, Alfieri CM, Yutzey KE (2004) Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn 230(2): 239–250

    Google Scholar 

  • Ling P, Taber L, Humphrey J (2002) Approach to quantify the mechanical behavior of the intact embryonic chick heart. Ann Biomed Eng 30: 636–645

    Google Scholar 

  • Liu A, Nickerson A, Troyer A, Yin X, Cary R, Thornburg K, Wang R, Rugonyi S (2011) Quantifying blood flow and wall shear stresses in the outflow tract of chick embryonic hearts. Comput Struct 89(11–12): 855–867

    Google Scholar 

  • Loots E, Hillen B, Veldman AEP (2003) The role of hemodynamics in the development of the outflow tract of the heart. J Eng Math 45(1):91–104, 0022-0833

    Google Scholar 

  • Loumes L, Avrahami I, Gharib M (2008) Resonant pumping in a multilayer impedance pump. Phys Fluids 20(2): 023–103

    Google Scholar 

  • Lucitti JL, Tobita K, Keller BB (2005) Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo. J Exp Biol 208(Pt 10): 1877–1885

    Google Scholar 

  • Ma L, Lu MF, Schwartz RJ, Martin JF (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132(24): 5601–5611

    Google Scholar 

  • Ma Z, Liu A, Yin X, Troyer A, Wang R, Rugonyi S (2010) Absolute flow velocity measurement in hh18 chicken embryo outflow tract based on 4d reconstruction using spectral domain optical coherence tomography. Biomed Opt Express 1: 798–811

    Google Scholar 

  • Männer J (2000) Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 259(3): 248–262

    Google Scholar 

  • Männer J (2004) On rotation, torsion, lateralization, and handedness of the embryonic heart loop: new insights from a simulation model for the heart loop of chick embryos. Anat Rec A Discov Mol Cell Evol Biol 278(1): 481–492

    Google Scholar 

  • Manner J, Thrane L, Norozi K, Yelbuz T (2008) High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography. Dev Dyn 237(4): 953–961

    Google Scholar 

  • Manner J, Thrane L, Norozi K, Yelbuz T (2009) In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function. Dev Dyn 238(12): 3273–3278

    Google Scholar 

  • Manner J, Wessel A, Yelbuz TM (2010) How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn 239(4): 1035–1046

    Google Scholar 

  • Maron BJ, Hutchins GM (1974) The development of the semilunar valves in the human heart. Am J Pathol 74(2): 331–344

    Google Scholar 

  • Martinsen BJ (2005) Reference guide to the stages of chick heart embryology. Dev Dyn 233(4): 1217–1237

    Google Scholar 

  • Mercola M, Levin M (2001) Left-right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol 17: 779–805

    Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378(6555): 386–390

    Google Scholar 

  • Miller CE, Wong CL, Sedmera D (2003) Pressure overload alters stress-strain properties of the developing chick heart. Am J Physiol Heart C 285(5): H1849–H1856

    Google Scholar 

  • Miura GI, Yelon D (2011) A guide to analysis of cardiac phenotypes in the zebrafish embryo. Methods Cell Biol 101: 161–180

    Google Scholar 

  • Moser M, Huang JW, Schwarz GS, Kenner T, Noordergraaf A (1998) Impedance defined flow generalisation of william harvey’s concept of the circulation—370 years later. Int J Cardiovasc Med Sci 1: 205–211

    Google Scholar 

  • Nomura-Kitabayashi A, Phoon CKL, Kishigami S, Rosenthal J, Yamauchi Y, Abe K, Yamamura Ki, Samtani R, Lo CW, Mishina Y (2009) Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring bmpria-mediated signaling in cardiac neural crest. Am J Physiol Heart C 297(5): H1617–H1628

    Google Scholar 

  • Ong LL, Kim N, Mima T, Cohen-Gould L, Mikawa T (1998) Trabecular myocytes of the embryonic heart require n-cadherin for migratory unit identity. Dev Biol 193(1): 1–9

    Google Scholar 

  • Oostra RJ, Steding G, Virágh S (2007) Steding’s and Virágh’s scanning electron microscopy atlas of the developing human heart. Springer, New York

    Google Scholar 

  • O’Rahilly R, Muller F (1987) Developmental stages in human embryos. Carnegie Institution Washington Publication, Washington, DC, p 673

    Google Scholar 

  • O’Rahilly R, Muller F (2010) Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 192(2): 73–84

    Google Scholar 

  • Ottesen JT (2003) Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation. J Math Biol 46(4): 309–332

    MathSciNet  MATH  Google Scholar 

  • Paff GH (1940) A micro-method for digitalis assay. J Pharmacol Exp Ther 69(4): 311–315

    Google Scholar 

  • Paff GH, Johnson JR (1938) The behavior of the embryonic heart in solutions of ouabain. Am J Physiol 122(3): 753–758

    Google Scholar 

  • Paff GH, Boucek RJ, Klopfenstein HS (1964) Experimental heart-block in the chick embryo. Anat Rec 149: 217–223

    Google Scholar 

  • Parpart ER, Glaser O (1929) Temperature and heart rate in chick embryos. J Exp Biol 7: 143–153

    Google Scholar 

  • Pelster B, Burggren WW (1996) Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (danio rerio). Circ Res 79(2): 358–362

    Google Scholar 

  • Phelan CM, Hughes SF, Benson JDW (1995) Heart rate-dependent characteristics of diastolic ventricular filling in the developing chick embryo. Pediatr Res 37(3): 289–293

    Google Scholar 

  • Phoon C, Turnbull D (2003) Ultrasound biomicroscopy-doppler in mouse cardiovascular development. Physiol Genomics 14(1): 3–15

    Google Scholar 

  • Phoon C, Ji R, Aristizabal O, Worrad D, Zhou B, Baldwin H, Turnbull D (2004) Embryonic heart failure in nfatc1-/- mice: novel mechanistic insights from in utero ultrasound biomicroscopy. Circ Res 95(1): 92–99

    Google Scholar 

  • Poelmann R, Gittenberger-de Groot A, Hierck B (2008) The development of the heart and microcirculation: role of shear stress. Med Biol Eng Comput 46: 479–484

    Google Scholar 

  • Rauhut-Klaban M, Bruska M, Woźniak W (2008) Early trabeculation and closure of the interventricular foramen in staged human embryos. Folia Morphol (Warsz) 67(1): 13–18

    Google Scholar 

  • Reckova M, Rosengarten C, de Almeida A, Stanley CP, Wessels A, Gourdie RG, Thompson RP, Sedmera D (2003) Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93(1): 77–85

    Google Scholar 

  • Rodbard S (1956) Vascular modifications induced by flow. Am Heart J 51(6): 926–942

    Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4): 455–467

    Google Scholar 

  • Rugonyi S, Shaut C, Liu A, Thornburg K, Wang RK (2008) Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation. Phys Med Biol 53(18): 5077–5091

    Google Scholar 

  • Rychter Z (1978) Analysis of relations between aortic arches and aorticopulmonary septation. Birth Defects Orig Artic Ser 14(7): 443–448

    Google Scholar 

  • Rychter Z, Rychterova V (1981) Angio- and myoarchitecture of the heart wall under normal and experimentally changed morphogen- esis. Raven Press, New York, pp 431–452

    Google Scholar 

  • Rychter Z, Rychterova V, Lemez L (1979) Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. Herz 4: 86–90

    Google Scholar 

  • Rychterova V (1971) Principle of growth in thickness of the heart ventricular wall in the chick embryo. Folia Morphol (Praha) 19: 262–272

    Google Scholar 

  • Santhanakrishnan A, Miller L (2011) Fluid dynamics of heart development. Cell Biochem Biophys 61(1): 1–22

    Google Scholar 

  • Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23(10): 912–923

    Google Scholar 

  • Sedmera D, Pexieder T, Hu N, Clark EB (1997) Developmental changes in the myocardial architecture of the chick. Anat Rec 248(3): 421–432

    Google Scholar 

  • Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB (1999) Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254(2): 238–252

    Google Scholar 

  • Sedmera D, Hu N, Weiss KM, Keller BB, Denslow S, Thompson RP (2002) Cellular changes in experimental left heart hypoplasia. Anat Rec 267(2): 137–145

    Google Scholar 

  • Smith T, Bader D (2007) Signals from both sides: control of cardiac development by the endocardium and epicardium. Semin Cell Dev Biol 18(1): 84–89

    Google Scholar 

  • Srivastava D (2006) Genetic regulation of cardiogenesis and congenital heart disease. Annu Rev Pathol 1: 199–213

    Google Scholar 

  • Stalsberg H (1970) Development and ultrastructure of the embryonic heart. ii. mechanism of dextral looping of the embryonic heart. Am J Cardiol 25(3): 265–271

    Google Scholar 

  • Stekelenburg-de Vos S, Ursem NTC, Hop WCJ, Wladimiroff JW, Gittenberger-de Groot AC, Poelmann RE (2003) Acutely altered hemodynamics following venous obstruction in the early chick embryo. J Exp Biol 206(Pt 6): 1051–1057

    Google Scholar 

  • Stekelenburg-de Vos S, Steendijk P, Ursem NT, Wladimiroff JW, Delfos R, Poelmann RE (2005) Systolic and diastolic ventricular function assessed by pressure–volume loops in the stage 21 venous clipped chick embryo. Pediatr Res 57(1): 16–21

    Google Scholar 

  • Taber LA (1991) On a nonlinear theory for muscle shells: part ii–application to the beating left ventricle. J Biomech Eng 113(1): 63–71

    Google Scholar 

  • Taber LA (1998) Mechanical aspects of cardiac development. Prog Biophys Mol Biol 69(2–3): 237–255

    Google Scholar 

  • Taber LA, Humphrey J (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123: 528–535

    Google Scholar 

  • Taber LA, Lin IE, Clark EB (1995) Mechanics of cardiac looping. Dev Dyn 203(1): 42–50

    Google Scholar 

  • Taber LA, Zhang J, Perucchio R (2007) Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. J Biomech Eng 129(3): 441–449

    Google Scholar 

  • Tobita K, Keller BB (2000) Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am J Physiol Heart C 279(3): H959–H969

    Google Scholar 

  • Tobita K, Schroder EA, Tinney JP, Garrison JB, Keller BB (2002) Regional passive ventricular stress-strain relations during development of altered loads in chick embryo. Am J Physiol Heart C 282(6): H2386–H2396

    Google Scholar 

  • Tomlins P, Wang R (2005) Theory, development and applications of optical coherence tomography. J Phys D Appl Phys 38: 2519–2535

    Google Scholar 

  • Ursem NTC, Stekelenburg-de Vos S, Wladimiroff JW, Poelmann RE, Gittenberger-de Groot AC, Hu N, Clark EB (2004) Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction. J Exp Biol 207(Pt 9): 1487–1490

    Google Scholar 

  • Usha S, Rao AR (1995) Peristaltic transport of a biofluid in a pipe of elliptic cross section. J Biomech 28(1): 45–52

    Google Scholar 

  • Van den Berg G, Moorman A (2009) Concepts of cardiac development in retrospect. Pediatr Cardiol 30: 580–587

    Google Scholar 

  • Van der Heiden K, Groenendijk B, Hierck B, Hogers B, Koerten H, Mommaas A, Gittenberger-de Groot A, Poelmann R (2006) Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 235: 19–28

    Google Scholar 

  • Vennemann P, Kiger KT, Lindken R, Groenendijk BC, Stekelenburg-de Vos S, ten Hagen TL, Ursem NT, Poelmann RE, Westerweel J, Hierck BP (2006) In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech 39(7): 1191–1200

    Google Scholar 

  • Vermot J, Forouhar A, Liebling M, Wu D, Plummer D, Gharib M, Fraser S (2009) Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7(11): 2511–2524

    Google Scholar 

  • Voronov DA, Taber LA (2002) Cardiac looping in experimental conditions: effects of extraembryonic forces. Dev Dyn 224(4): 413–421

    Google Scholar 

  • Voronov DA, Alford PW, Xu G, Taber LA (2004) The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo. Dev Biol 272(2): 339–350

    Google Scholar 

  • Wagman AJ, Hu N, Clark EB (1990) Effect of changes in circulating blood volume on cardiac output and arterial and ventricular blood pressure in the stage 18, 24, and 29 chick embryo. Circ Res 67(1): 187–192

    Google Scholar 

  • Wagner M, Siddiqui MAQ (2007) Signal transduction in early heart development (ii): ventricular chamber specification, trabeculation, and heart valve formation. Exp Biol Med (Maywood) 232(7): 866–880

    Google Scholar 

  • Wang Y, Dur O, Patrick MJ, Tinney JP, Tobita K, Keller BB, Pekkan K (2009) Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng 37(6): 1069–1081

    Google Scholar 

  • Warkman AS, Krieg PA (2007) Xenopus as a model system for vertebrate heart development. Semin Cell Dev Biol 18(1): 46–53

    Google Scholar 

  • Yalcin HC, Shekhar A, Nishimura N, Rane AA, Schaffer CB, Butcher JT (2010) Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects. Am J Physiol Heart C 299(5): H1728–H1735

    Google Scholar 

  • Yalcin HC, Shekhar A, McQuinn TC, Butcher JT (2011) Hemodynamic patterning of the avian atrioventricular valve. Dev Dyn 240(1): 23–35

    Google Scholar 

  • Yang M, Taber LA, Clark EB (1994) A nonlinear poroelastic model for the trabecular embryonic heart. J Biomech Eng 116(2): 213–223

    Google Scholar 

  • Yoshigi M, Keller B (1997) Characterization of embryonic aortic impedance with lumped parameter models. Am J Physiol Heart C 42(1): H19–H27

    Google Scholar 

  • Zhou YQ, Foster FS, Qu DW, Zhang M, Harasiewicz KA, Adamson SL (2002) Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood. Physiol Genomics 10(2): 113–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Rugonyi.

Additional information

Sevan Goenezen and Monique Y. Rennie contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goenezen, S., Rennie, M.Y. & Rugonyi, S. Biomechanics of early cardiac development. Biomech Model Mechanobiol 11, 1187–1204 (2012). https://doi.org/10.1007/s10237-012-0414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0414-7

Keywords

Navigation