Skip to main content

Advertisement

Log in

Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid–structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity (\(3,000\,\upmu \upvarepsilon \) compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities \((\sim 60.5\,\upmu \text{ m/s })\) and average maximum shear stresses \((\sim 11\, \text{ Pa })\) surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech 42(12):1989–1995

    Article  Google Scholar 

  • Ajubi NE, Klein-Nulend J, Nijweide PJ, Vrijheid-Lammers T, Alblas MJ, Burger EH (1996) Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes–A cytoskeleton-dependent process. Biochem Biophys Res Commun 225(1):62–68. doi:10.1006/bbrc.1996.1131

    Article  Google Scholar 

  • Anderson E, Kaliyamoorthy S, Alexander J, Tate M (2005) Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes. Ann Biomed Eng 33(1):52–62. doi:10.1007/s10439-005-8962-y

    Article  Google Scholar 

  • Anderson E, Kreuzer S, Small O (2008) Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro- and nano-scale pericellular spaces. Microfluid Nanofluid 4(3):193–204. doi:10.1007/s10404-007-0156-5

    Article  Google Scholar 

  • Anderson EJ, Knothe Tate ML (2008) Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes. J Biomech 41(8):1736–1746

    Article  Google Scholar 

  • Appelman TP, Mizrahi J, Seliktar D (2011) A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation. J Biomech Eng 133(4):041010–041012

    Article  Google Scholar 

  • Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJWA, Klein-Nulend J, Smit TH (2008) Round versus flat: bone cell morphology, elasticity, and mechanosensing. J Biomech 41(7):1590–1598

    Article  Google Scholar 

  • Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJWA, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315(4):823–829

    Article  Google Scholar 

  • Bakker AD, Soejima K, Klein-Nulend J, Burger EH (2001) The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J Biomech 34(5):671–677

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164. doi:10.1063/1.1712886

    Article  MATH  Google Scholar 

  • Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185. doi:10.1063/1.1721956

    Article  MATH  MathSciNet  Google Scholar 

  • Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 23:13–17

    Google Scholar 

  • Birmingham E, Grogan JA, Niebur GL, McNamara LM, McHugh PE (2013) Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann Biomed Eng 41(4):814–826. doi:10.1007/s10439-012-0714-1

  • Burger EH, Veldhuijzen JP (1993) Influence of mechanical factors on bone formation, resorption and growth in vitro. Bone 7:37–56

    Google Scholar 

  • Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18(5):405–410

    Article  Google Scholar 

  • Chatterjee N, Chatterjee A (2001) Role of alphavbeta3 integrin receptor in the invasive potential of human cervical cancer (SiHa) cells. J Environ Pathol Toxicol Oncol 20(3):211–221

    Google Scholar 

  • Cheng JT, Giordano N (2002) Fluid flow through nanometer-scale channels. Phys Rev E 65(3):031206

    Article  Google Scholar 

  • Clover J, Dodds RA, Gowen M (1992) Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. J Cell Sci 103(1):267–271

    Google Scholar 

  • Darling EM, Topel M, Zauscher S, Vail TP, Guilak F (2008) Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41(2):454–464

    Article  Google Scholar 

  • Deligianni D, Apostolopoulos C (2008) Multilevel finite element modeling for the prediction of local cellular deformation in bone. Biomech Model Mechanobiol 7(2):151–159. doi:10.1007/s10237-007-0082-1

    Article  Google Scholar 

  • Devoll RE, Pinero GJ, Appelbaum ER, Dul E, Troncoso P, Butler WT, Farach-Carson MC (1997) Improved immunohistochemical staining of osteopontin (OPN) in paraffin-embedded archival bone specimens following antigen retrieval: anti-human OPN antibody recognizes multiple molecular forms. Calcif Tissue Int 60(4):380–386. doi:10.1007/s002239900247

    Article  Google Scholar 

  • Dowling EP, Ronan W, Ofek G, Deshpande VS, McMeeking RM, Athanasiou KA, McGarry JP (2012) The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation. J R Soc Interface. 9(77):3469–3479. doi:10.1098/rsif.2012.0428

    Google Scholar 

  • Engleman VW, Nickols GA, Ross FP, Horton MA, Griggs DW, Settle SL, Ruminski PG, Teitelbaum SL (1997) A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest 99(9):2284–2292. doi:10.1172/JCI119404

    Article  Google Scholar 

  • Fritton SP, J. McLeod K, Rubin CT (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33(3):317–325

    Article  Google Scholar 

  • Goldstein SA, Matthews LS, Kuhn JL, Hollister SJ (1991) Trabecular bone remodeling: an experimental model. J Biomech 24:Supplement 1:135–150

    Google Scholar 

  • Goulet G, Coombe D, Martinuzzi R, Zernicke R (2009) Poroelastic evaluation of fluid movement through the lacunocanalicular system. Ann Biomed Eng 37(7):1390–1402. doi:10.1007/s10439-009-9706-1

    Article  Google Scholar 

  • Gururaja S, Kim H, Swan C, Brand R, Lakes R (2005) Modeling deformation-induced fluid flow in cortical bone’s canalicular-lacunar system. Ann Biomed Eng 33(1):7–25. doi:10.1007/s10439-005-8959-6

    Article  Google Scholar 

  • Han Y, Cowin SC, Schaffler MB, Weinbaum S (2004) Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA 101(47):16689–16694. doi:10.1073/pnas.0407429101

    Article  Google Scholar 

  • Horton MA, Taylor ML, Arnett TR, Helfrich MH (1991) Arg Gly Asp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Exp Cell Res 195(2):368–375. doi:10.1016/0014-4827(91)90386-9

    Google Scholar 

  • Huang S, Stupack D, Liu A, Cheresh D, Nemerow GR (2000) Cell growth and matrix invasion of EBV-immortalized human B lymphocytes is regulated by expression of alpha(v) integrins. Oncogene 19(15):1915–1923

    Article  Google Scholar 

  • Kamioka H, Kameo Y, Imai Y, Bakker AD, Bacabac RG, Yamada N, Takaoka A, Yamashiro T, Adachi T, Klein-Nulend J (2012) Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integr Biol

  • Kamioka H, Sugawara Y, Murshid SA, Ishihara Y, Honjo T, Takano-Yamamoto T (2006) Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21(7):1012–1021. doi:10.1359/jbmr.060408

    Article  Google Scholar 

  • Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9(5):441–445

    Google Scholar 

  • Knothe Tate M (2001) Mixing mechanisms and net solute transport in bone. Ann Biomed Eng 29(9):810–811. doi:10.1114/1.1397788

    Google Scholar 

  • Knothe Tate ML (2003) Whither flows the fluid in bone? An osteocyte’s perspective. J Biomech 36(10):1409–1424

    Article  Google Scholar 

  • Knothe Tate ML, Knothe U (2000) An ex vivo model to study transport processes and fluid flow in loaded bone. J Biomech 33(2):247–254. doi:10.1016/s0021-9290(99)00143-8

    Google Scholar 

  • Knothe Tate ML, Knothe U, Niederer P (1998a) Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. Am J Med Sci 316(3):189–195

    Article  Google Scholar 

  • Knothe Tate ML, Niederer P (1998) A theoretical FE-base model developed to predict the relative contribution of convective and diffusive transport mechanisms for the maintenance of local equilibria within cortical bone. Paper presented at the Advances in Heat and Mass Transfer in Biotechnology, Anaheim, California

  • Knothe Tate ML, Niederer P, Knothe U (1998b) In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22(2):107–117. doi:10.1016/s8756-3282(97)00234-2

    Article  Google Scholar 

  • Knothe Tate ML, Steck R, Forwood MR, Niederer P (2000) In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol 203(18):2737–2745

    Google Scholar 

  • Lanyon LE, Rubin CT (1984) Static versus dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905

    Article  Google Scholar 

  • Mak AFT, Huang DT, Zhang JD, Tong P (1997) Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity. J Biomech 30(1):11–18

    Article  Google Scholar 

  • Manfredini P, Cocchetti G, Maier G, Redaelli A, Montevecchi FM (1999) Poroelastic finite element analysis of a bone specimen under cyclic loading. J Biomech 32(2):135–144

    Article  Google Scholar 

  • McGarry J (2009) Characterization of cell mechanical properties by computational modeling of parallel plate compression. Ann Biomed Eng 37(11):2317–2325. doi:10.1007/s10439-009-9772-4

    Article  Google Scholar 

  • McGarry JP, Fu J, Yang MT, Chen CS, McMeeking RM, Evans AG, Deshpande VS (2009) Simulation of the contractile response of cells on an array of micro-posts. Philos Trans R Soc A Math Phys Eng Sci 367(1902):3477–3497. doi:10.1098/rsta.2009.0097

    Article  MATH  MathSciNet  Google Scholar 

  • McKee MD, Nanci A (1996) Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech 33(2):141–164

    Article  Google Scholar 

  • McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB (2009) Attachment of osteocyte cell processes to the bone matrix. Anat Rec 292(3):355–363. doi:10.1002/ar.20869

    Article  Google Scholar 

  • Noda M, Tsuji K, Nifuji A (2003) Osteopontin: a topic from the point of bone morphology. Clin Calcium 13(4):464–466

    Google Scholar 

  • Ofek G, Dowling E, Raphael R, McGarry J, Athanasiou K (2010) Biomechanics of single chondrocytes under direct shear. Biomech Model Mechanobiol 9(2):153–162. doi:10.1007/s10237-009-0166-1

    Article  Google Scholar 

  • Owan I, Burr DB, Turner CH, Qiu J, Tu Y, Onyia JE, Duncan RL (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol Cell Physiol 273(3):C810–C815

    Google Scholar 

  • Piekarski K, Munro M (1977) Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269(5623):80–82

    Article  Google Scholar 

  • Price C, Zhou X, Li W, Wang L (2011) Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: Direct evidence for load-induced fluid flow. J Bone Miner Res 26(2):277–285. doi:10.1002/jbmr.211

    Article  Google Scholar 

  • Rath Bonivtch A, Bonewald LF, Nicolella DP (2007) Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. J Biomech 40(10):2199–2206. doi:10.1016/j.jbiomech.2006.10.040

    Article  Google Scholar 

  • Ronan W, Deshpande VS, McMeeking RM, McGarry JP (2012) Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J Mech Behav Biomed Mater 14:143–157. doi:10.1016/j.jmbbm.2012.05.016

    Article  Google Scholar 

  • Ross FP, Chappel J, Alvarez JI, Sander D, Butler WT, Farach-Carson MC, Mintz KA, Robey PG, Teitelbaum SL, Cheresh DA (1993) Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem 268(13):9901–9907

    Google Scholar 

  • Sansalone V, Kaiser J, Naili S, Lemaire T (2012) Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu. Biomech Model Mechanobiol 1–21. doi:10.1007/s10237-012-0422-7

  • Sittichockechaiwut A, Scutt AM, Ryan AJ, Bonewald LF, Reilly GC (2009) Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Bone 44(5):822–829. doi:10.1016/j.bone.2008.12.027

    Article  Google Scholar 

  • Smalt R, Mitchell FT, Howard RL, Chambers TJ (1997) Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. American Journal of Physiology - Endocrinology And Metabolism 273(4):E751–E758

    Google Scholar 

  • Sodek J, McKee MD (2000) Molecular and cellular biology of alveolar bone. Periodontology 24(1):99–126. doi:10.1034/j.1600-0757.2000.2240106.x

    Article  Google Scholar 

  • Steck R, Niederer P (2003) A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone. J Theor Biol 220(2):249–259

    Article  Google Scholar 

  • Sugawara Y, Ando R, Kamioka H, Ishihara Y, Murshid SA, Hashimoto K, Kataoka N, Tsujioka K, Kajiya F, Yamashiro T, Takano-Yamamoto T (2008) The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes. Bone 43(1):19–24

    Article  Google Scholar 

  • Tanaka-Kamioka K, Kamioka H, Ris H, Lim S-S (1998) Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res 13(10):1555–1568. doi:10.1359/jbmr.1998.13.10.1555

    Article  Google Scholar 

  • Taylor ME, Tanner KE, Freeman MAR, Yettram AL (1996) Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys 18(2):122–131. doi:10.1016/1350-4533(95)00031-3

    Article  Google Scholar 

  • Vatsa A, Semeins CM, Smit TH, Klein-Nulend J (2008) Paxillin localisation in osteocytes–is it determined by the direction of loading? Biochem Biophys Res Commun 377(4):1019–1024. doi:10.1016/j.bbrc.2007.12.174

    Article  Google Scholar 

  • Vaughan TJ, Haugh MG, McNamara LM (2013) A fluid-structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems. J R Soc Interface 10(81). doi:10.1098/rsif.2012.0900

  • Vaughan TJ, McCarthy CT, McNamara LM (2012) A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. J Mech Behav Biomed Mater 12:50–62

    Article  Google Scholar 

  • Verbruggen SW, Vaughan TJ, McNamara LM (2012) Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface. doi:10.1098/rsif.2012.0286

  • Wang L, Cowin SC, Weinbaum S, Fritton SP (2000) Modeling tracer transport in an osteon under cyclic loading. Ann Biomed Eng 28(10):1200–1209. doi:10.1114/1.1317531

    Article  Google Scholar 

  • Wang L, Cowin S, Weinbaum S, Fritton S (2001) In Response to “Mixing Mechanisms and Net Solute Transport in Bone” by M. L. Knothe Tate. Ann Biomed Eng 29(9):812–816. doi:10.1114/1.1397789

  • Wang L, Wang Y, Han Y, Henderson SC, Majeska RJ, Weinbaum S, Schaffler MB (2005) In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci USA 102(33):11911–11916. doi:10.1073/pnas.0505193102

    Article  Google Scholar 

  • Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci 104(40):15941–15946. doi:10.1073/pnas.0707246104

    Article  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360

    Article  Google Scholar 

  • Westbroek I, Ajubi NE, Alblas MJ, Semeins CM, Klein-Nulend J, Burger EH, Nijweide PJ (2000) Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun 268(2):414–419. doi:10.1006/bbrc.2000.2154

    Article  Google Scholar 

  • You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 122(4):387–393

    Article  Google Scholar 

  • You L-D, Weinbaum S, Cowin SC, Schaffler MB (2004) Ultrastructure of the osteocyte process and its pericellular matrix. Anatomical Rec A Discov Mol Cell Evol Biol 278A(2):505–513. doi:10.1002/ar.a.20050

  • You L, Cowin SC, Schaffler MB, Weinbaum S (2001) A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech 34(11):1375–1386

    Google Scholar 

  • Zeng Y, Cowin S, Weinbaum S (1994) A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann Biomed Eng 22(3):280–292. doi:10.1007/bf02368235

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the Irish Research Council for Science, Engineering and Technology (IRCSET), under the EMBARK program (S. W. V.), the European Research Council (ERC) under grant number 258992 (BONEMECHBIO) and the Irish Centre for High-End Computing (ICHEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laoise M. McNamara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbruggen, S.W., Vaughan, T.J. & McNamara, L.M. Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach. Biomech Model Mechanobiol 13, 85–97 (2014). https://doi.org/10.1007/s10237-013-0487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0487-y

Keywords

Navigation