Skip to main content
Log in

Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotransduction. The particular shape of caveolae suggests that these structures serve to prevent exposure of putative mechanosensors residing within these membrane invaginations to shear stresses at magnitudes associated with initiation of cell signaling. Accordingly, we numerically analyzed the fluid flow in and around caveolae using the equation of motion for flow of plasma at low Reynolds numbers and assuming no slip-condition on the membrane. The plasma velocity inside a typical caveola and the shear stress acting on its membrane are markedly reduced compared to the outside membrane. Computation of the diffusion field in the vicinity of a caveola under flow, however, revealed a rapid equilibration of agonist concentration in the fluid inside a caveola with the outside plasma. Western blots and immunocytochemistry support the role of caveolae as shear stress shelters for putative membrane-bound mechanoreceptors such as flk-1. Our results, therefore, suggest that caveolae serve to reduce the fluid shear stress acting on receptors in their interior, while allowing rapid diffusion of ligands into the interior. This mechanism may permit differential control of flow and ligand activation of flk-1 receptor in the presence of ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson RG (1993) Potocytosis of small molecules and ions by caveolae. Trends Cell Biol 3:69–72

    Article  Google Scholar 

  • Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411

    Article  Google Scholar 

  • Boyd NL, Park H, Yi H, Boo YC, Sorescu GP et al (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285:H1113–H1122

    Article  Google Scholar 

  • Bruns RR, Palade GE (1968) Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol 37:244–276

    Article  Google Scholar 

  • Bundgaard M, Hagman P, Crone C (1983) The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res 25:358–368

    Article  Google Scholar 

  • Butler PJ, Tsou TC, Li JY, Usami S, Chien S (2002) Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J 16:216–218

    Article  Google Scholar 

  • Capozza F, Combs TP, Cohen AW, Cho YR, Park SY et al (2005) Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Physiol 288:C1317–C1331

    Article  Google Scholar 

  • Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA 103:15463–15468

    Article  Google Scholar 

  • Chang WJ, Ying YS, Rothberg KG, Hooper NM, Turner AJ et al (1994) Purification and characterization of smooth muscle cell caveolae. J Cell Biol 126:127–138

    Article  Google Scholar 

  • Chen KD, Li YS, Kim M, Li S, Yuan S et al (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274:18393–18400

    Article  Google Scholar 

  • Chien S, Lee MM, Laufer LS, Handley DA, Weinbaum S et al (1981) Effects of oscillatory mechanical disturbance on macromolecular uptake by arterial wall. Arteriosclerosis 1:326–336

    Article  Google Scholar 

  • Chien S, Laufer L, Handley DA (1982) Vesicle distribution in the arterial endothelium determined with ruthenium red as an extracellular marker. J Ultrastruct Res 79:198–206

    Article  Google Scholar 

  • Chigorno V, Palestini P, Sciannamblo M, Dolo V, Pavan A et al (2000) Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. Eur J Biochem 267:4187–4197

    Article  Google Scholar 

  • Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    Article  Google Scholar 

  • Cohen AW, Hnasko R, Schubert W, Lisanti MP (2004a) Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341–1379

    Article  Google Scholar 

  • Cohen AW, Razani B, Schubert W, Williams TM, Wang XB et al (2004b) Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53:1261–1270

    Article  Google Scholar 

  • Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814

    Article  Google Scholar 

  • Feron O, Han X, Kelly RA (1999) Muscarinic cholinergic signaling in cardiac myocytes: dynamic targeting of M2AChR to sarcolemmal caveolae and eNOS activation. Life Sci 64:471–477

    Article  Google Scholar 

  • Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479

    Article  Google Scholar 

  • Frokjaer-Jensen J (1991) The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. J Electron Microsc Tech 19:291–304

    Article  Google Scholar 

  • Fung Y-C, Sobin SS (1972) Elasticity of the pulmonary alveolar sheet. Circ Res 30:451–468

    Article  Google Scholar 

  • Garanich JS, Pahakis M, Tarbell JM (2005) Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am J Physiol Heart Circ Physiol 288:H2244–H2252

    Article  Google Scholar 

  • Handley DA, Chien S (1987) Colloidal gold labeling studies related to vascular and endothelial function, hemostasis and receptor-mediated processing of plasma macromolecules. Eur J Cell Biol 43:163–174

    Google Scholar 

  • Handley DA, Arbeeny CM, Witte LD, Chien S (1981) Colloidal gold-low density lipoprotein conjugates as membrane receptor probes. Proc Natl Acad Sci USA 78:368–371

    Article  Google Scholar 

  • Hillsley MV, Frangos JA (1994) Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng 43:573–581

    Article  Google Scholar 

  • Jacobson BS, Schnitzer JE, McCaffery M, Palade GE (1992) Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur J Cell Biol 58:296–306

    Google Scholar 

  • Jalali S, del Pozo MA, Chen K, Miao H, Li Y et al (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98:1042–1046

    Article  Google Scholar 

  • Johnson DL, McAllister TN, Frangos JA (1996) Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol 271:E205–E208

    Google Scholar 

  • Kosawada T, Matsukawa H (2003) A theoretical study of forming mechanism of membrane patent channels across endothelial cell (Chained Vesicular Channel and Infundibular Channel). JSME Int J, Ser C 46:1218–1225

    Article  Google Scholar 

  • Kosawada T, Skalak R, Schmid-Schönbein GW (1999) Chained vesicles in vascular endothelial cells. J Biomech Eng 121:472–479

    Article  Google Scholar 

  • Kosawada T, Sanada K, Takano T (2001) Large deformation mechanics of plasma membrane chained vesicles in cells. JSME Int J, Ser C 44:928–936

    Article  Google Scholar 

  • Kosawada T, Inoue K, Schmid-Schönbein GW (2005) Mechanics of curved plasma membrane vesicles: resting shapes, membrane curvature, and in-plane shear elasticity. J Biomech Eng 127:229–236

    Article  Google Scholar 

  • Lasley RD, Smart EJ (2001) Cardiac myocyte adenosine receptors and caveolae. Trends Cardiovasc Med 11:259–263

    Article  Google Scholar 

  • Lee J (1990) The morphometry and mechanical properties of skeletal muscle capillaries. Ph.D. dissertation. University of California, San Diego, La Jolla

  • Lee HJ, Koh GY (2003) Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun 304:399–404

    Article  Google Scholar 

  • Lee J, Schmid-Schönbein GW (1995) Biomechanics of muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann Biomed Eng 23:226–246

    Article  Google Scholar 

  • Lisanti MP, Scherer PE, Tang Z, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–235

    Article  Google Scholar 

  • Lorenzen-Schmidt I, Schmid-Schönbein GW, Giles WR, McCulloch AD, Chien S, Omens JH (2006) Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear. Cell Biochem Biophys 46:113–122

    Article  Google Scholar 

  • Makino A, Prossnitz ER, Bünemann M, Wang JM, Yao W, Schmid-Schönbein GW (2006) G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol 290:C1633–C1639

    Article  Google Scholar 

  • Mineo C, Anderson RG (2001) Potocytosis: Robert Feulgen Lecture. Histochem Cell Biol 116:109–118

    Google Scholar 

  • Palade GE, Bruns RR (1968) Structural modulations of plasmalemmal vesicles. J Cell Biol 37:633–649

    Article  Google Scholar 

  • Park H, Go YM, St John PL, Maland MC, Lisanti MP et al (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 273:32304–32311

    Article  Google Scholar 

  • Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG et al (2002) Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol 160:2207–2217

    Article  Google Scholar 

  • Pike LJ (2005) Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 1746:260–273

    Article  Google Scholar 

  • Rizzo V, Sung A, Oh P, Schnitzer JE (1998a) Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273:26323–26329

    Article  Google Scholar 

  • Rizzo V, McIntosh DP, Oh P, Schnitzer JE (1998b) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273:34724–34729

    Article  Google Scholar 

  • Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285:H1720–H1729

    Article  Google Scholar 

  • Schmid-Schönbein GW, Kosawada T, Skalak R, Chien S (1995) Membrane model of endothelial cells and leukocytes. A proposal for the origin of a cortical stress. J Biomech Eng 117:171–178

    Article  Google Scholar 

  • Schnitzer JE (2001) Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv Drug Deliv Rev 49:265–280

    Article  Google Scholar 

  • Schnitzer JE, Oh P, Jacobson BS, Dvorak AM (1995) Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2 +)-ATPase, and inositol trisphosphate receptor. Proc Natl Acad Sci USA 92:1759–1763

    Article  Google Scholar 

  • Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE et al (2002) Microvascular hyperpermeability in caveolin-1 (–/–) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

    Article  Google Scholar 

  • Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275:L843–L851

    Google Scholar 

  • Shiu YT, Li S, Marganski WA, Usami S, Schwartz MA et al (2004) Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys J 86:2558–2565

    Article  Google Scholar 

  • Shyy JY, Chien S (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9:707–713

    Article  Google Scholar 

  • Simionescu M, Gafencu A, Antohe F (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 57:269–288

    Article  Google Scholar 

  • Stan RV, Kubitza M, Palade GE (1999a) PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc Natl Acad Sci USA 96:13203–13207

    Article  Google Scholar 

  • Stan RV, Ghitescu L, Jacobson BS, Palade GE (1999b) Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J Cell Biol 145:1189–1198

    Article  Google Scholar 

  • Sternberg PW, Schmid SL (1999) Caveolin, cholesterol and Ras signalling. Nat Cell Biol 1:E35–E37

    Article  Google Scholar 

  • Tada S, Tarbell JM (2002) Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations). Am J Physiol Heart Circ Physiol 282:H576–H584

    Article  Google Scholar 

  • Thomsen P, Roepstorff K, Stahlhut M, van Deurs B (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13:238–250

    Article  Google Scholar 

  • Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20:4639–4647

    Article  Google Scholar 

  • Wang Y, Miao H, Li S, Chen KD, Li YS et al (2002) Interplay between integrins and FLK-1 in shear stress-induced signaling. Am J Physiol Cell Physiol 283:C1540–C1547

    Article  Google Scholar 

  • Woodman SE, Ashton AW, Schubert W, Lee H, Williams TM et al (2003) Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 162:2059–2068

    Article  Google Scholar 

  • Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458

    Article  Google Scholar 

  • Yang B, Radel C, Hughes D, Kelemen S, Rizzo V (2011) p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vasc Biol 31:376–383

    Article  Google Scholar 

  • Yen R-T (1989) Elasticity of microvessels in postmortem human lungs. In: Lee J-S, Skalak TC (eds) Microvascular mechanics. Springer, New York, pp 175–190

    Chapter  Google Scholar 

  • Zhu W, Smart EJ (2003) Caveolae, estrogen and nitric oxide. Trends Endocrinol Metab 14:114–117

    Article  Google Scholar 

Download references

Funding

This study was funded by JSPS Grant-in-Aid for Scientific Research, No. (B)12450093, 14655089, (B)15360119 and NIH Program Project Grant HL 43026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Schmid-Schönbein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, H., Haga, J.H., Kosawada, T. et al. Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors. Biomech Model Mechanobiol 18, 5–16 (2019). https://doi.org/10.1007/s10237-018-1063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1063-2

Keywords

Navigation