Skip to main content
Log in

The Air-Conditioning Capacity of the Human Nose

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The nose is the front line defender of the respiratory system. Unsteady simulations in three-dimensional models have been developed to study transport patterns in the human nose and its overall air-conditioning capacity. The results suggested that the healthy nose can efficiently provide about 90% of the heat and the water fluxes required to condition the ambient inspired air to near alveolar conditions in a variety of environmental conditions and independent of variations in internal structural components. The anatomical replica of the human nose showed the best performance and was able to provide 92% of the heating and 96% of the moisture needed to condition the inspired air to alveolar conditions. A detailed analysis explored the relative contribution of endonasal structural components to the air-conditioning process. During a moderate breathing effort, about 11% reduction in the efficacy of nasal air-conditioning capacity was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, D. J., F. M. Baroody, E. Naureckas, and R. M. Naclerio. Elevation of nasal mucosal temperature increases the ability of the nose to warm and humidify air. Am. J. Rhinol. 15(1):41–45, 2001.

    CAS  PubMed  Google Scholar 

  2. Becker, W., H. H. Naumann, and C. R. Pfaltz. Ear, Nose, and Throat Diseases: A Pocket Reference. New York: Thieme Medical Pub, 1994.

    Google Scholar 

  3. Cole, P. Biophysics of nasal airflow: A review. Am. J. Rhinol. 14(4): 245–249, 2000.

    CAS  PubMed  Google Scholar 

  4. Cole, P. Further consideration on the conditioning of respiratory air. J. Laryngol. Otol. 67:669–681, 1953.

    CAS  PubMed  Google Scholar 

  5. Cole, P. Some aspects of temperature, moisture and heat relationships in the upper respiratory tract. J. Laryngol. Otol. 67:449–456, 1953.

    CAS  PubMed  Google Scholar 

  6. Daviskas, E., I. Gonda, and S. D. Anderson. Mathematical modeling of heat and water transport in human respiratory tract. J. Appl. Physiol. 69:362–372, 1990.

    CAS  PubMed  Google Scholar 

  7. Eccles, R. Nasal airflow in health and disease. Acta Otolaryngol. 120(5):580–595, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Elad, D., R. Liebenthal, B. L. Wenig, and S. Einav. Analysis of air flow patterns in the human nose. Med. Biol. Eng. Comput. 31:585–592, 1993.

    CAS  PubMed  Google Scholar 

  9. Elsevier’s Interactive Anatomy: Paranasal Sinuses & Anterior Skull Base, Disc I of Volume 1: The Head & Neck. Available from http://www.elsevier.nl.

  10. Falls, H. B. Exercise Physiology. New York: Academic Press, 1968.

    Google Scholar 

  11. Farley, R. D., and K. R. Patel. Comparison of air warming in the human airway with a thermodynamic model. Med. Biol. Eng. Comput. 26:628–632, 1988.

    CAS  PubMed  Google Scholar 

  12. Ferron, G. A., B. Haider, and W. G. Kreyling. A method for the approximation of the relative humidity in the upper human airway. Bull. Math. Biol. 47:565–589, 1985.

    CAS  PubMed  Google Scholar 

  13. Fox, E., R. Bowers, and M. Foss. The Physiological Basis for Exercise and Sport. Masison: Brown & Benchmark Pub, 1993.

    Google Scholar 

  14. Hahn, I., P. W. Scherer, and M. M. Mozell. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J. Appl. Physiol. 75:2273–2287, 1993.

    CAS  PubMed  Google Scholar 

  15. Hanna, L. M., and P. W. Scherer. A theoretical model of localized heat and water vapor transport in the human respiratory tract. J. Biomech. Eng. 108:19–27, 1986.

    CAS  PubMed  Google Scholar 

  16. Hanna, L. M., and P. W. Scherer. Regional control of local airway heat and water vapor losses. J. Appl. Physiol. 61:624–632, 1986.

    CAS  PubMed  Google Scholar 

  17. Hörschler, I., M. Meinke, and W. Schröder. Numerical simulation of the flow field in a model of the nasal cavity. Comput. Fluids 32:39–45, 2003.

    Google Scholar 

  18. Ingelstedt, S. Studies on the conditioning of air in the respiratory tract. Acta Otolaryng. (Stockholm) Suppl. 131:1–80, 1956.

    Google Scholar 

  19. Keck, T., R. Leiacker, H. Riechelmann, and G. Rettinger. Temperature profile in the nasal cavity. Laryngoscope 110(4):651–654, 2000.

    CAS  PubMed  Google Scholar 

  20. Keyhani, K., P. W. Scherer, and M. M. Mozell. Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117:429–441, 1995.

    CAS  PubMed  Google Scholar 

  21. Lang, J. Clinical Anatomy of the Nose, Nasal Cavity and Paranasal Sinuses. New York: Thiem Medical Pub, 1989.

    Google Scholar 

  22. McFadden, E. R., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Solway. Thermal mapping of the airways in humans. J. Appl. Physiol. 58(2):564–570, 1985.

    PubMed  Google Scholar 

  23. McFadden, E. R. Heat and water exchange in human airway. Am. Rev. Respir. Dis. 146:S8–S10, 1992.

    PubMed  Google Scholar 

  24. McFadden, E. R. Respiratory heat and water exchange: Physiological and clinical implications. J. Appl. Physiol. 54(2):331–336, 1983.

    PubMed  Google Scholar 

  25. Morris, I. R. Functional anatomy of the upper airway. Emerg. Med. Clin. North Am. 6:639–669, 1988.

    CAS  Google Scholar 

  26. Naftali, S., R. C. Schroter, R. J. Shiner, and D. Elad. Transport phenomena in the human nasal cavity: A computational model. Ann. Biomed. Eng. 26:831–839, 1998.

    CAS  PubMed  Google Scholar 

  27. Nuckols, M. L., J. L. Zumrick, and C. E. Johnson. Heat and water vapor transport in the human upper airways at hyperbaric conditions. J. Biomech. Eng. 105:24–30, 1983.

    CAS  PubMed  Google Scholar 

  28. Primiano, F. P., Jr., G. M. Saidel, F. W. Montague, K. L. Kruse, C. G. Green, and J. G. Horowitz. Water vapour and temperature dynamics in the upper airways of normal and CF subjects. Eur. Respir. J. 1:407–414, 1988.

    PubMed  Google Scholar 

  29. Proctor, D. F., and D. L. Swift. Temperature and water vapor adjustment. Respir. Defense Mech. Part I 4:95–124, 1977.

    Google Scholar 

  30. Proctor, D. F. Airborne disease and the upper respiratory tract. Bacteriol. Rev. 30:498–513, 1966.

    CAS  PubMed  Google Scholar 

  31. Proctor, D. F. The upper airways: Nasal physiology and defense of the lungs. Am. Rev. Respir. Dis. 115:97–129, 1977.

    CAS  PubMed  Google Scholar 

  32. Rice, D. H. Rebuilding the inferior turbinate with hydroxyapatite cement. Ear. Nose Throat J. 79(4):276–277, 2000.

    CAS  PubMed  Google Scholar 

  33. Rouadi, P., F. M. Baroody, D. Abbott, E. Naureckas, J. Solway, and R. M. Naclerio. A technique to measure the ability of the human nose to warm and humidify air. J. Appl. Physiol. 87(1):400–406, 1999.

    CAS  PubMed  Google Scholar 

  34. Saidel, G. M., K. L. Kruse, and F. P. Primiano Jr. Model simulation of heat and water transport dynamics in an airway. J. Biomech. Eng. 105:188–193, 1983.

    CAS  PubMed  Google Scholar 

  35. Scherer, P. W., I. I. Hahn, and M. M. Mozell. The biophysics of nasal airflow. Otolaryngol. Clin. North Am. 22:265–278, 1989.

    CAS  PubMed  Google Scholar 

  36. Schroter, R. C., and N. V. Watkins. Respiratory heat exchange in mammals. Respir. Physiol. 78:357–368, 1989.

    CAS  PubMed  Google Scholar 

  37. Subramanian, R. P., R. B. Richardson, K. T. Morgan, and J. S. Kimbell. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 10:91–120, 1998.

    Google Scholar 

  38. Thibodeau, G. A., and K. T. Patton. Anatomy & Physiology, 2nd ed. Mosby, 1993.

  39. Vander, A. J., J. H. Shermann, and D. S. Luciano. Human Physiology: The Mechanisms of Body Function. New York: McGraw-Hill, 1975.

    Google Scholar 

  40. Wolf, M., S. Naftali, R. C. Schroter, and D. Elad. Air-conditioning characteristics of the human nose. J. Laryngol. Otol. 118(2):87–92, 2004.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Elad DSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naftali, S., Rosenfeld, M., Wolf, M. et al. The Air-Conditioning Capacity of the Human Nose. Ann Biomed Eng 33, 545–553 (2005). https://doi.org/10.1007/s10439-005-2513-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2513-4

Keywords

Navigation