Skip to main content
Log in

Metastatic Burst Fracture Risk Assessment Based on Complex Loading of the Thoracic Spine

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechanical integrity of vertebral bone is compromised when metastatic cancer cells migrate to the spine, rendering it susceptible to burst fracture under physiologic loading. Risk of burst fracture has been shown to be dependent on the magnitude of the applied load, however limited work has been conducted to determine the effect of load type on the stability of the metastatic spine. The objective of this study was to use biphasic finite element modeling to evaluate the effect of multiple loading conditions on a metastatically-involved thoracic spinal motion segment. Fifteen loading scenarios were analyzed, including axial compression, flexion, extension, lateral bending, torsion, and combined loads. Additional analyses were conducted to assess the impact of the ribcage on the stability of the thoracic spine. Results demonstrate that axial loading is the predominant load type leading to increased risk of burst fracture initiation, while rotational loading led to only moderate increases in risk. Inclusion of the ribcage was found to reduce the potential for burst fracture by 27%. These findings are important in developing a more comprehensive understanding of burst fracture mechanics and in directing future modeling efforts. The results in this study may also be useful in advising less harmful activities for patients affected by lytic spinal metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.

Similar content being viewed by others

Abbreviations

VB:

vertebral bulge

LICN:

load-induced canal narrowing

PWTHS:

posterior wall tensile hoop strain

REFERENCES

  1. Argoubi, M., and A. Shirazi-Adl. Poroelastic creep response analysis of a lumbar motion segment in compression. J. Biomech. 29(10):1331–1339, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Berry, J. L., J. M. Moran, W. S. Berg, and A. D. Steffee. A morphometric study of human lumbar and selected thoracic vertebrae. Spine 12(4):362–367, 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Brickley-Parsons, D., and M. J. Glimcher. Is the chemistry of collagen in intervertebral discs an expression of Wolff's law. Spine 9(2):148–163, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Brolin, K., and P. Halldin. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine 29(4):376–385, 2004.

    Article  PubMed  Google Scholar 

  5. Brown, T. D., and M. S. Vrahas. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J. Orthop. Res. 2(1):32–38, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. 203:71–75, 1989.

    CAS  Google Scholar 

  7. Crawford, R. P., and T. M. Keaveny. Relationship between axial and bending behaviors of the human thoracolumbar vertebra. Spine 29(20):2248–2255, 2004.

    Article  PubMed  Google Scholar 

  8. Dimar, J. R., M. J. Voor, Y. M. Zhang, and S. D. Glassman. A human cadaver model for determination of pathologic fracture threshold resulting from tumors destruction of the vertebral body. Spine 23(11):1209–1214, 1998.

    Article  PubMed  Google Scholar 

  9. Ebihara, H., M. Ito, K. Abumi, H. Taneichi, Y. Kotani, A. Minami, and K. Kaneda. A biomechanical analysis of metastatic vertebral collapse of the thoracic spine: A sheep model study. Spine 29(9):994–999, 2004.

    Article  PubMed  Google Scholar 

  10. Granhed, H., R. Jonson, and T. Hansson. Mineral content and strength of lumbar vertebrae. A cadaver study. Acta Orthop. Scand. 60(1):105–109, 1989.

    PubMed  CAS  Google Scholar 

  11. Han, J. S., V. K. Goel, J. Y. Ahn, J. Winterbottom, D. McGowan, J. Weinstein, and T. Cook. Loads in the spinal structures during lifting: Development of a three-dimensional comprehensive biomechanical model. Eur. Spine J. 4(3):153–168, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Holdsworth, F. W. Fractures, dislocations, and fracture-dislocations of the spine. J. Bone Joint Surg. 45B(1):6–20, 1963.

    Google Scholar 

  13. Hong, J. H., J. H. Ah, T. H. Lim, and H. S. An. Correlation among permeability, apparent density, and porosity of human lumbar vertebral trabecular bone. In: Proceedings of the Transactions of the 44th Annual Meeting, Orthopaedic Research Society, New Orleans, 1998.

    Google Scholar 

  14. Jemal, A., R. C. Tiwari, T. Murray, A. Ghofoor, A. Samuels, E. J. Feuer, and M. J. Thun. Cancer statistics. CA A Cancer J. Clin. 54:8–29, 2004.

    Google Scholar 

  15. Kopperdahl, D. L., and T. M. Keaveny. Yield strain behavior of trabecular bone. J. Biomech. 31(7):601–608, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Lotz, J. C., P. A. Glazer, and E. C. Gryler. Tensile properties of the human vertebral endplate. In: Proccedings of the 22nd Annual Symposium of the International Society for the Study of the Lumbar Spine, Helsinki, Finland, 1995.

  17. McCutchen, C. W. The friction properties of animal joints. Wear 5(1):1–17, 1962.

    Article  Google Scholar 

  18. McGill, S. M., and R.W. Norman. Partitioning of the L4–L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11(7):666–678, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Miller, J. A. A., A. B. Schultz, D. N. Warwick, and D. L. Spencer. Mechanical properties of lumbar spine motion segments under large loads. J. Biomech. 19(1):79–84, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Mosekilde, L., L. Mosekilde, and C. C. Danielsen. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8(2):79–85, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Nauman, E. A., K. E. Fong, and T. M. Keaveny. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27(4):517–524, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Oda, I., K. Abumi, D. Lu, Y. Shono, and K. Keneda. Biomechanical role of the posterior elements, costovertebral joints, and ribcage in the stability of the thoracic spine. Spine 21(12):1423–1433, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Osvalder, A. L., P. Neumann, P. Lovsund, and A. Nordwall. Ultimate strength of the lumbar spine in flexion—An in vitro study. J. Biomech. 23(5):453–460, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Osvalder, A. L., P. Neumann, P. Lovsund, and A. Nordwall. A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J. Biomech. 26(10):1227–1236, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Panjabi, M. M., T. Oxland, K. Takata, V. Goel, J. Duranceau, and M. Krag. Articular facets of the human spine. Quantitative three-dimensional anatomy. Spine 18(10):1298–1310, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Panjabi, M. M., T. R. Oxland, I. Yamamoto, and J. J. Crisco. Mechanical behaviour of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. 76-A(3):413–424, 1994.

    Google Scholar 

  27. Panjabi, M. M., K. Takata, V. Goel, D. Federico, T. Oxland, J. Duranceau, and M. Krag. Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16(8):888–901, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Polikeit, A., L. P. Nolte, and S. J. Ferguson. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis. Spine 28(10):991–996, 2003.

    Article  PubMed  Google Scholar 

  29. Puttlitz, C. M. A biomechanical investigation of the craniovertebral junction. Doctoral thesis, University of Iowa, 1999.

  30. Roth, S. E., P. Mousavi, J. Finkelstein, E. Chow, H. Kreder, and C. M. Whyne. Metastatic burst fracture risk prediction using biomechanically based equations. Clin. Orthop. Relat. Res. 419:83–90, 2004.

    Article  PubMed  Google Scholar 

  31. Schaberg, J., and B. J. Gainor. A profile of metastatic carcinoma of the spine. Spine 10(1):19–20, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Schultz, A., G. Andersson, R. Ortengren, K. Haderspeck, and A. Nachemson. Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J. Bone Joint Surg. Am. 64(5):713–720, 1982.

    PubMed  CAS  Google Scholar 

  33. Shirazi-Adl, A., A. M. Ahmed, and S. C. Shrivastava. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J. Biomech. 19(4):331–350, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Silva, M. J., J. A. Hipp, D. P. McGowan, T. Takenchi, and W. C. Hayes. Strength reductions of throracic vertebra in the presence of transcortical osseous defects: Effect of defect location, pedicle disruption, and defect size. Eur. Spine J. 2:118–125, 1993.

    Article  CAS  PubMed  Google Scholar 

  35. Silva, M. J., T. M. Keaveny, and W. C. Hayes. Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22(2):140–150, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Simon, B. R., J. S. S. Wu, M. W. Carlton, L. E. Kazarian, E. P. France, J. H. Evans, and O. C. Zienkiewicz. Poroelastic dynamic structural models of rhesus spinal motion segments. Spine 10(6):494–507, 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Skipor, A. F., J. A. A. Miller, D. A. Spencer, and A. B. Schultz. Stiffness properties and geometry of lumbar spine posterior elements. J. Biomech. 18(11):821–830, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Takeuchi, T., K. Abumi, Y. Shono, I. Oda, and K. Kaneda. Biomechanical role of the interverteibral disc and costovertebral joint in stability of the thoracic spine. Spine 24(14):1414–1420, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Taneichi, H., K. Kaneda, N. Takeda, K. Abumi, and S. Satoh. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine 22(3):239–245, 1997.

    Article  PubMed  CAS  Google Scholar 

  40. Tawackoli, W., R. Marco, and M. A. K. Liebschner. The effect of compressive axial preload on the flexibility of the thoracic spine. Spine 29(9):988–993, 2004.

    Article  PubMed  Google Scholar 

  41. Tencer, A. F., A. M. Ahmed, and D. L. Burke. Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104(3):193–201, 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Tschirhart, C. E., A. Nagpurkar, and C. M. Whyne. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J. Biomech. 37(5):653–660, 2004.

    Article  PubMed  Google Scholar 

  43. Whealan, K. M., S. D. Kwak, J. R. Tedrow, K. Inoue, and B. D. Snyder. Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J. Bone Joint Surg. Am. 82(9):1240–1251, 2000.

    PubMed  CAS  Google Scholar 

  44. White, A. A., and M. M. Panjabi. Clinical Biomechanics of the Spine 2nd ed. Philadelphia:JB Lippincott Company, 1992.

    Google Scholar 

  45. Whyne, C. M. Development of guidelines for the prophylactic treatment of metastatically involved vertebral bodies. Doctoral thesis, University of California, Berkley, 1999.

  46. Whyne, C. M., S. S. Hu, and J. C. Lotz. Parametric finite element analysis of vertebral bodies affected by tumors. J. Biomech. 34(10):1317–1324, 2001.

    Article  PubMed  CAS  Google Scholar 

  47. Whyne, C. M., S. S. Hu, and J. C. Lotz. Burst fracture in the metastatically involved spine: Development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine 28(7):652–660, 2003.

    Article  PubMed  Google Scholar 

  48. Whyne, C. M., S. S. Hu, K. L. Workman, and J. C. Lotz. Biphasic material properties of lytic bone metastases. Ann. Biomed. Eng. 28(9):1154–1158, 2000.

    Article  PubMed  CAS  Google Scholar 

  49. Wilke, H., A. Rohlmann, S. Neller, M. Schulthei, G. Bergmann, F. Graichen, and L. E. Claes. Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load component sin an internal fixator. Spine 26(6):636–642, 2001.

    Article  PubMed  CAS  Google Scholar 

  50. Wilke, H., P. Neef, B. Hinz, H. Seidel, and L. Claes. Intradiscal pressure together with anthropometric data—Data set for the validation of models. Clin. Biomech. 16(S1):111–126, 2001.

    Article  Google Scholar 

  51. Windhagen, H. J., J. A. Hipp, M. J. Silva, S. J. Lipson, and W. C. Hayes. Predicting failure of thoracic vertebrae with simulated and actual metastatic defects. Clin. Orthop. Relat. Res. 344:313–319, 1997.

    Article  PubMed  Google Scholar 

  52. Wong, D. A., V. L. Fornasier, and I. MacNab. Spinal metastases: The obvious, the occult, and the impostors. Spine 15(1):1–4, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEGMENTS

Support for this work was provided by Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cari M. Whyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschirhart, C.E., Finkelstein, J.A. & Whyne, C.M. Metastatic Burst Fracture Risk Assessment Based on Complex Loading of the Thoracic Spine. Ann Biomed Eng 34, 494–505 (2006). https://doi.org/10.1007/s10439-005-9063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9063-7

Keywords

Navigation