Skip to main content
Log in

The Relative Contributions of Compression and Hypoxia to Development of Muscle Tissue Damage: An In Vitro Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Deep pressure ulcers develop in tissues subjected to sustained mechanical loading. Though it has been hypothesized that this damage mechanism results from local tissue ischemia, it has recently been shown with a cell model that sustained compression can cause cell deformation, leading to tissue breakdown. The present study focuses on the assessment of cell viability during compression and ischemia in an in vitro muscle model to determine their relative contributions to damage development. A model system was developed consisting of engineered skeletal muscle produced from the culture of murine muscle cells in a collagen gel. The tissue was subjected to 0, 20, or 40% compression under hypoxic or normoxic conditions. Experiments were performed on the stage of a microscope and cell viability was monitored using fluorescent markers for apoptotic and necrotic cell death. Hypoxia did not lead to significant cell death over a 22 h period. By contrast, compression led to immediate cell death that increased with time. No additional effect of hypoxia on cell death was observed. These data show that contrary to existing theories, compression can cause development of muscle damage and that hypoxia does not contribute to cell death development within 22 h in engineered muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  1. Arthur P. G., Giles J. J., Wakeford C. M. (2000) Protein synthesis during oxygen conformance and severe hypoxia in the mouse muscle cell line C2C12. Biochim. Biophys. Acta 1475:83–89

    PubMed  CAS  Google Scholar 

  2. Barbenel J. C. (1991) Pressure management. Prosthet. Orthot. Int. 15:225–231

    PubMed  CAS  Google Scholar 

  3. Bliss M. R. (1998) Pressure injuries: Causes and prevention. Hosp. Med. 59:841–844

    PubMed  CAS  Google Scholar 

  4. Bosboom E. M., Bouten C. V., Oomens C. W., van Straaten H. W., Baaijens F. P., Kuipers H. (2001) Quantification and localisation of damage in rat muscles after controlled loading; a new approach to study the aetiology of pressure sores. Med. Eng. Phys. 23:195–200

    Article  PubMed  CAS  Google Scholar 

  5. Bouten C. V., Knight M. M., Lee D. A., Bader D. L. (2001) Compressive deformation and damage of muscle cell subpopulations in a model system. Ann. Biomed. Eng. 29:153–163

    Article  PubMed  CAS  Google Scholar 

  6. Bouten C. V. C., Oomens C. W., Baaijens F. P., Bader D. L. (2003) The etiology of pressure ulcers: Skin deep or muscle bound? Arch. Phys. Med. Rehabil. 84:616–619

    Article  PubMed  Google Scholar 

  7. Bouten C. V. C., Breuls R. G. M., Peeters E. A. G., Oomens C. W. J., Baaijens F. P. T. (2003) In vitro models to study compressive strain-induced muscle cell damage. Biorheology 40:383–388

    PubMed  Google Scholar 

  8. Breuls R. G. M., Bouten C. V. C., Oomens C. W. J., Bader D. L., Baaijens F. P. T. (2003) Compression induced cell damage in engineered muscle tissue: An in vitro model to study pressure ulcer aetiology. Ann. Biomed. Eng. 31:1357–1364

    Article  PubMed  CAS  Google Scholar 

  9. Bronneberg D., Bouten C. V. C., Oomens C. W. J., van Kemenade P. M., Baaijens F. P. T. (2006) An in vitro model system to study the damaging effects of prolonged mechanical loading of the epidermis. Ann. Biomed. Eng. 34:506–514

    Article  PubMed  Google Scholar 

  10. Brunelle J. K., Chandel N. S. (2002) Oxygen deprivation induced cell death: An update. Apoptosis 7:475–482

    Article  PubMed  CAS  Google Scholar 

  11. Byrne D. W., Salzberg C. A. (1996) Major risk factors for pressure ulcers in the spinal cord disabled: A literature review. Spinal Cord 34:255–263

    PubMed  CAS  Google Scholar 

  12. Covington M. D., Bayless K. J., Burghardt R. C., Davis G. E., Parrish A. R. (2005) Ischemia-induced cleavage of cadherins in NRK cells: Evidence for a role of metalloproteinases. Am. J. Physiol. Renal Physiol. 289:F280–F288

    Article  PubMed  CAS  Google Scholar 

  13. Daniel R. K., Priest D. L., Wheatley D. C. (1981) Etiologic factors in pressure sores: An experimental model. Arch. Phys. Med. Rehabil. 62:492–498

    PubMed  CAS  Google Scholar 

  14. Dinsdale S. M. (1974) Decubitus ulcers: Role of pressure and friction in causation. Arch. Phys. Med. Rehabil. 55:147–152

    PubMed  CAS  Google Scholar 

  15. Garber S. L., Rintala D. H. (2003) Pressure ulcers in veterans with spinal cord injury: A retrospective study. J. Rehabil. Res. Dev. 40:433–441

    Article  PubMed  Google Scholar 

  16. Gawlitta D., Oomens C. W. J., Baaijens F. P. T., Bouten C. V. C. (2004) Evaluation of a continuous quantification method of apoptosis and necrosis in tissue cultures. Cytotechnology 46:139–150

    Article  PubMed  Google Scholar 

  17. Gefen A., Gefen N., Linder-Ganz E., Margulies S. S. (2005) In vivo muscle stiffening under bone compression promotes deep pressure sores. J. Biomech. Eng. 127:512–524

    Article  PubMed  CAS  Google Scholar 

  18. Husian T. (1953) An experimental study of some pressure effects on tissues, with reference to the bed-sore problem. J. Pathol. Bacteriol. 66:347–358

    Article  Google Scholar 

  19. Jiang B. H., Semenza G. L., Bauer C., Marti H. H. (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271:C1172–C1180

    PubMed  CAS  Google Scholar 

  20. Kosiak M. (1959) Etiology and pathology of ischemic ulcers. Arch. Phys. Med. Rehabil. 40:62–69

    PubMed  CAS  Google Scholar 

  21. Meldrum K. K., Meldrum D. R., Hile K. L., Burnett A. L., Harken A. H. (2001) A novel model of ischemia in renal tubular cells which closely parallels in vivo injury. J. Surg. Res. 99:288–293

    Article  PubMed  CAS  Google Scholar 

  22. Miller G. E., Seale J. (1981) Lymphatic clearance during compressive loading Lymphology 14:161–166

    PubMed  CAS  Google Scholar 

  23. Nola G. T., Vistnes L. M. (1980) Differential response of skin and muscle in the experimental production of pressure sores. Plast. Reconstr. Surg. 66:728–733

    Article  PubMed  CAS  Google Scholar 

  24. Oomens C. W. J., Bressers O. F. J. T., Bosboom E. M. H., Bouten C. V. C., Bader D. L. (2003) Can loaded interface characteristics influence strain distributions in muscle adjacent to bony prominences? Comput. Methods Biomech. Biomed. Eng. 6:171–180

    Article  CAS  Google Scholar 

  25. Portier G. L., Benders A. G., Oosterhof A., Veerkamp J. H., van Kuppevelt T. H. (1999) Differentiation markers of mouse C2C12 and rat L6 myogenic cell lines and the effect of the differentiation medium. In Vitro Cell Dev. Biol. Anim. 35:219–227

    Article  PubMed  CAS  Google Scholar 

  26. Prewitt R. L., Johnson P. C. (1976) The effect of oxygen on arteriolar red cell velocity and capillary density in the rat cremaster muscle. Microvasc. Res. 12:59–70

    Article  PubMed  CAS  Google Scholar 

  27. Reddy N. P., Cochran G. V. (1981) Interstitial fluid flow as a factor in decubitus ulcer formation. J. Biomech. 14:879–881

    Article  PubMed  CAS  Google Scholar 

  28. Reger S. I., McGovern T. F., Chung K. C. (1990) Biomechanics of tissue distortion and stiffness by magnetic resonance imaging In: Bader D. L. (ed), Pressure Sores: Clinical Practice and Scientific Approach. London: The Macmillan Press, pp. 177–190

    Google Scholar 

  29. Reswick J. B., Rogers J. E. (1976) Experience at Rancho Los Amigos hospital with devices and techniques to prevent pressure sores In: Kenedi R. M., Cowden J. M. (eds), Bedsore Biomechanics. London: The Macmillan Press, pp. 301–310

    Google Scholar 

  30. Richmond K. N., Shonat R. D., Lynch R. M., Johnson P. C. (1999) Critical PO(2) of skeletal muscle in vivo. Am. J. Physiol. 277:H1831–H1840

    PubMed  CAS  Google Scholar 

  31. Scelsi R. (2001) Skeletal muscle pathology after spinal cord injury: Our 20 year experience and results on skeletal muscle changes in paraplegics, related to functional rehabilitation. Basic Appl. Myol. 11:75–85

    Google Scholar 

  32. Stekelenburg, A. The relative contributions of deformation and ischaemia to deep tissue injury. In Mechanisms Associated with Deep Tissue Injury Induced by Sustained Compressive Loading. Eindhoven University of Technology, PhD Thesis, 2005

  33. Tsuji S., Ichioka S., Sekiya N., Nakatsuka T. (2005) Analysis of ischemia-reperfusion injury in a microcirculatory model of pressure ulcers. Wound Repair Regen. 13:209–215

    Article  PubMed  Google Scholar 

  34. Vandenburgh H., Del Tatto M., Shansky J., Lemaire J., Chang A., Payumo F., Lee P., Goodyear A., Raven L. (1996) Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene. Ther. 7:2195–2200

    PubMed  CAS  Google Scholar 

  35. Wang Y. N., Bouten C. V. C., Lee D. A., Bader D. L. (2005) Compression-induced damage in a muscle cell model in vitro. Proc. Inst. Mech. Eng. [H.] 219:1–12

    Google Scholar 

Download references

Acknowledgments

The authors thank Rob van den Berg and Harrie van de Loo for their contribution to the design and manufacturing of the experimental system. This research was supported by the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debby Gawlitta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawlitta, D., Li, W., Oomens, C.W.J. et al. The Relative Contributions of Compression and Hypoxia to Development of Muscle Tissue Damage: An In Vitro Study. Ann Biomed Eng 35, 273–284 (2007). https://doi.org/10.1007/s10439-006-9222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9222-5

Keywords

Navigation