Skip to main content
Log in

In Vitro System for Applying Cyclic Loads to Connective Tissues Under Displacement or Force Control

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Overuse is thought to be the primary cause of chronic tendon injuries, in which forceful or repetitive loading results in an accumulation of micro-tears leading to a maladaptive repair response. In vitro organ culture models provide a useful method for examining how specific loading patterns affect the cellular response to load which may explain the early mechanisms of tissue injury associated with tendinopathies and ligament injuries. We designed a novel tissue loading system which employs closed-loop force feedback, capable of loading six tissue samples independently under force or displacement control. The system was capable of applying loads up to 40 N at rates of 100 N s−1 and frequencies of 2 Hz, well above loads and rates measured in rabbit tendons in vivo. Loading parameters such as amplitude, rate, and frequency can be controlled while biomechanical factors such as creep, force relaxation, tangent modulus and Young’s modulus can be assessed. The system can be used to examine the relationship between each loading parameter and biomechanical factors of connective tissues maintained in culture which may provide useful information regarding the etiology of overuse injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Archambault J. M., Wiley J. P, Bray R. C. (1995) Exercise loading of tendons and the development of overuse injuries. A review of current literature. Sports Med. 20(2):77–89

    PubMed  CAS  Google Scholar 

  2. Armstrong T. J., Fine L. J, Goldstein S. A, Lifshitz Y. R, Silverstein B.A. (1987) Ergonomics considerations in hand and wrist tendinitis. J. Hand Surg. [Am.] 12:830–837

    CAS  Google Scholar 

  3. Arnoczky S., Tian T., Lavagnino M., Gardner K. (2004) Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J. Orthop. Res. 22:328–333

    Article  PubMed  CAS  Google Scholar 

  4. Banes A. J., Weinhold P., Yang X., Tsuzaki M., Bynum D., Bottlang M., Brown T. (1999) Gap junctions regulate response of tendon cells ex vivo to mechanical loading. Clin. Orthop. Relat. Res. 367:s356–s370

    Article  PubMed  Google Scholar 

  5. Barbe M. F., Barr A. E, Gorzelany I., Amin M., Gaughan J. P, Safadi F. F. (2003) Chronic repetitive reaching and grasping result in decreased motor performance and widespread tissue responses in a rat model of MSD. J. Orthop. Res. 21:167–176

    Article  PubMed  CAS  Google Scholar 

  6. Bureau of Labor Statistics, U.S. Department of Labor. www.bls.gov/iif/home.htm, May 2002

  7. Butler D. L., Grood E. S., Noyes F. R., Zernicke R. F. (1978) Biomechanics of ligaments and tendons. Exerc. Sport Sci. Rev. 6:125–181

    PubMed  CAS  Google Scholar 

  8. Devkota A., Weinhold P. S. (2005) A tissue explant system for assessing tendon overuse injury. Med. Eng. Phys. 27:803–808

    Article  PubMed  Google Scholar 

  9. Hannafin J. A., Arnoczky S. P, Hoonjan A., Torzilli P. A. (1995) Effect of stress deprivation and cyclic tensile loading on material and morphological properties of canine flexor digitorum profundus tendon: an in vitro study. J. Orthop. Res. 13:907–914

    Article  PubMed  CAS  Google Scholar 

  10. Juncosa N., West J. R, Galloway M. T, Boivin G. P, Butler D. L. (2003) In vivo forces used to develop design parameters for tissue engineered implants for rabbit patellar tendon repair. J. Biomech. 36:483–488

    Article  PubMed  Google Scholar 

  11. Kannus P. (1997) Tendons—a source of major concern in competitive and recreational athletes. Scand. J. Med. Sci. Sports 7:53–54

    Article  PubMed  CAS  Google Scholar 

  12. Lavignino M., Arnoczky S. P, Tian T., Vaupel Z. (2003) Effect of amplitude and frequency of cyclic tensile stress on the inhibition of MMP-1 mRNA expression in tendon cells: an in vitro study. Connect Tissue Res. 44:181–187

    Google Scholar 

  13. Leadbetter W. (1992) Cell-matrix response in tendon injury. Clin. Sports Med. 11:533–578

    PubMed  CAS  Google Scholar 

  14. Li Z., Yang G., Khan M., Stone D., Woo S. L, Wang J. H. (2004) Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. Am. J. Sports Med. 32:435–440

    Article  PubMed  CAS  Google Scholar 

  15. Malaviya P., Butler D. L, Korvick D. L, Proch F. S. (1998) In vivo tendon forces correlate with the activity level and remain bounded: evidence in a rabbit flexor tendon model. J. Biomech. 31:1043–1049

    Article  PubMed  CAS  Google Scholar 

  16. Nakama L., King K., Abrahamsson S., Rempel D. (2005) Evidence of tendon microtears due to cyclical loading in an in vivo tendinopathy model. J. Orthop. Res. 23(5):1199–1205

    Article  PubMed  Google Scholar 

  17. National Research Council and the Institute of Medicine. Musculoskeletal Disorders and the Workplace: Low Back and Upper Extremities. Panel on Musculoskeletal Disorders and the Workplace. Commission on Behavioral and Social Sciences and Education. Washington, DC: National Academy Press, 2001, pp. 196–199

  18. Okuda Y., Gorski J. P, An K. N, Amadio P. C. (1987) Biochemical, histological and biomechanical analyses of canine tendon. J. Orthop. Res. 5:60–68

    Article  PubMed  CAS  Google Scholar 

  19. Perry S., McIlhenny S., Hoffman M., Soslowsky L. (2005) Inflammatory and angiogenic mRNA levels are altered in a supraspinatus tendon overuse animal model. J. Shoulder Elbow Surg. 14(1 Suppl S):79S–83S

    Article  PubMed  Google Scholar 

  20. Screen H., Lee D., Bader D., Shelton J. (2004) An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc. Inst. Mech. Eng. [H] 218:109–119

    CAS  Google Scholar 

  21. Slack C., Flint M. H, Thompson B. M. (1984) The effect of tensional load on isolated embryonic chick tendons in organ culture. Connect Tissue Res. 12:229–247

    PubMed  CAS  Google Scholar 

  22. Thornton G. M., Shrive N. G, Frank C. B. (2002) Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. J. Orthop. Res. 20:967–974

    Article  PubMed  CAS  Google Scholar 

  23. Torp S., Arridge R. G, Armeniades C. D., Baer E. (1975) Structure-property relationship in tendon as a function of age. In: Atkins E. D., Keller A. (eds) Structure of Fibrous Biopolymers. Butterworths, London: The Colston Research Society, pp. 197–221

    Google Scholar 

  24. Wang J. H. (2006) Mechanobiology of tendons. J. Biomech. 39:1563–1582

    Article  PubMed  Google Scholar 

  25. Wang J. H. Jia F., Yang G., Yang S., Campbell B., Stone D., Woo S. L. (2003) Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res. 44:128–133

    Google Scholar 

  26. Wang X. T., Ker R. F, Alexander R. M. (1995) Fatigue rupture of wallaby tail tendons. J. Exp. Biol. 198:847–852

    PubMed  CAS  Google Scholar 

  27. West J. R., Juncosa N., Galloway M. T, Boivin G. P, Butler D. L. (2004) Characterization of in vivo Achilles tendon forces in rabbits during treadmill locomotion at varying speeds and inclinations. J. Biomech. 37:1647–1653

    Article  PubMed  Google Scholar 

  28. Wren T. A., Yerby S. A, Beaupre G. S, Carter D. R. (2001) Mechanical properties of the human Achilles tendon. Clin. Biomech. 16:245–251

    Article  CAS  Google Scholar 

  29. Zernicke R. F., Butler D. L., Grood E. S, Hefzy M. S. (1984) Strain topography of human tendon and fascia. J. Biomech. Eng. 106:177–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Xing Chen and Alan Barr for their contributions to this study. Funding for this study was provided by the Centers for Disease and Prevention, National Institute for Occupational Safety and Health Training Grant (5T42OH008429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Rempel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asundi, K.R., Kursa, K., Lotz, J. et al. In Vitro System for Applying Cyclic Loads to Connective Tissues Under Displacement or Force Control. Ann Biomed Eng 35, 1188–1195 (2007). https://doi.org/10.1007/s10439-007-9295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9295-9

Keywords

Navigation