Skip to main content

Advertisement

Log in

Computationally Managed Bradycardia Improved Cardiac Energetics While Restoring Normal Hemodynamics in Heart Failure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In acute heart failure, systemic arterial pressure (AP), cardiac output (CO), and left atrial pressure (P LA) have to be controlled within acceptable ranges. Under this condition, cardiac energetic efficiency should also be improved. Theoretically, if heart rate (HR) is reduced while AP, CO, and P LA are maintained by preserving the functional slope of left ventricular (LV) Starling’s curve (S L) with precisely increased LV end-systolic elastance (E es), it is possible to improve cardiac energetic efficiency and reduce LV oxygen consumption per minute (MVO 2). We investigated whether this hemodynamics can be accomplished in acute heart failure using an automated hemodynamic regulator that we developed previously. In seven anesthetized dogs with acute heart failure (CO < 70 mL min−1 kg−1, P LA > 15 mmHg), the regulator simultaneously controlled S L with dobutamine, systemic vascular resistance with nitroprusside and stressed blood volume with dextran or furosemide, thereby controlling AP, CO, and P LA. Normal hemodynamics were restored and maintained (CO; 88 ± 3 mL min−1 kg−1, P LA; 10.9 ± 0.4 mmHg), even when zatebradine significantly reduced HR (−27 ± 3%). Following HR reduction, E es increased (+34 ± 14%), LV mechanical efficiency (stroke work/oxygen consumption) increased (+22 ± 6%), and MVO 2 decreased (−17 ± 4%) significantly. In conclusion, in a canine acute heart failure model, computationally managed bradycardia improved cardiac energetic efficiency while restoring normal hemodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Antman E. M., D. T. Anbe, P. W. Armstrong, E. R. Bates, L. A. Green, M. Hand, J. S. Hochman, H. M. Krumholz, F. G. Kushner, G. A. Lamas, C. J. Mullany, J. P. Ornato, D. L. Pearle, M. A. Sloan, S. C. Smith Jr., J. S. Alpert, J. L. Anderson, D. P. Faxon, V. Fuster, R. J. Gibbons, G. Gregoratos, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, A. K. Jacobs, J. P. Ornato (2004) American College of Cardiology; American Heart Association; Canadian Cardiovascular Society ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction–executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). J. Am. Coll. Cardiol. 44, 671–719. doi:10.1016/j.jacc.2004.07.002

    Article  PubMed  Google Scholar 

  2. Bein B., F. Worthmann, P. H. Tonner, A. Paris, M. Steinfath, J. Hedderich (2004) Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output. J. Cardiothorac. Vasc. Anesth. 18, 185–189. doi:10.1053/j.jvca.2004.01.025

    Article  PubMed  Google Scholar 

  3. Binkley P. F., K. D. Murray, K. M. Watson, P. D. Myerowitz, C. V. Leier (1991) Dobutamine increases cardiac output of the total artificial heart. Implications for vascular contribution of inotropic agents to augmented ventricular function. Circulation 84, 1210–1215

    PubMed  CAS  Google Scholar 

  4. Borer J. S., K. Fox, P. Jaillon, G. Lerebours (2003) Antianginal and antiischemic effects of ivabradine, an I(f) inhibitor, in stable angina: a randomized, double-blind, multicentered, placebo-controlled trial. Circulation 107, 817–823. doi:10.1161/01.CIR.0000048143.25023.87

    Article  PubMed  Google Scholar 

  5. Choong C. Y., G. S. Roubin, P. J. Harris, Y. Tokuyasu, W. F. Shen, G. J. Bautovich, D. T. Kelly (1986) A comparison of the effects of beta-blockers with and without intrinsic sympathomimetic activity on hemodynamics and left ventricular function at rest and during exercise in patients with coronary artery disease. J. Cardiovasc. Pharmacol. 8, 441–448. doi:10.1097/00005344-198605000-00001

    Article  PubMed  CAS  Google Scholar 

  6. Colin P., B. Ghaleh, X. Monnet, J. Su, L. Hittinger, J. F. Giudicelli, A. Berdeaux (2003) Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am. J. Physiol. Heart Circ. Physiol. 284, H676–H682

    PubMed  CAS  Google Scholar 

  7. Colucci W. S. (1989) Myocardial and vascular actions of milrinone. Eur. Heart J. 10(Suppl C), 32–38

    PubMed  Google Scholar 

  8. Freeman G. L., W. C. Little, R. A. O’Rourke (1987) Influence of heart rate on left ventricular performance in conscious dogs. Circ. Res. 61, 455–464

    PubMed  CAS  Google Scholar 

  9. Gingrich K. J., R. J. Roy (1991) Modeling the hemodynamic response to dopamine in acute heart failure. IEEE Trans. Biomed. Eng. 38, 267–272. doi:10.1109/10.133208

    Article  PubMed  CAS  Google Scholar 

  10. Glantz S. A. (1976) Ventricular pressure–volume curve indices change with end-diastolic pressure. Circ. Res. 39, 772–778

    PubMed  CAS  Google Scholar 

  11. Glower D. D., J. A. Spratt, N. D. Snow, J. S. Kabas, J. W. Davis, C. O. Olsen, G. S. Tyson, D. C. Sabiston Jr., J. S. Rankin (1985) Linearity of the Frank–Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71, 994–1009

    PubMed  CAS  Google Scholar 

  12. Guth B. D., T. Dietze (1995) If current mediates β-adrenergic enhancement of heart rate but not contractility in vivo. Basic Res. Cardiol. 90, 192–202. doi:10.1007/BF00805662

    Article  PubMed  CAS  Google Scholar 

  13. Hamlin R. L., T. Nakayama, H. Nakayama, C. A. Carnes (2003) Effects of changing heart rate on electrophysiological and hemodynamic function in the dog. Life Sci. 72, 1919–1930. doi:10.1016/S0024-3205(03)00015-8

    Article  PubMed  CAS  Google Scholar 

  14. Hayashi K., K. Shigemi, T. Shishido, M. Sugimachi, K. Sunagawa (2000) Single-beat estimation of ventricular end-systolic elastance-effective arterial elastance as an index of ventricular mechanoenergetic performance. Anesthesiology 92, 1769–1776. doi:10.1097/00000542-200006000-00037

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi Y., M. Takeuchi, H. Takaoka, K. Hata, M. Mori, M. Yokoyama (1996) Alteration in energetics in patients with left ventricular dysfunction after myocardial infarction: increased oxygen cost of contractility. Circulation 93, 932–939

    PubMed  CAS  Google Scholar 

  16. Hettrick D. A., P. S. Pagel, D. Lowe, J. P. Tessmer, D. C. Warltier (1996) Increases in inotropic state without change in heart rate: combined use of dobutamine and zatebradine in conscious dogs. Eur. J. Pharmacol. 316, 237–244. doi:10.1016/S0014-2999(96)00688-7

    Article  PubMed  CAS  Google Scholar 

  17. Hoeksel S. A., J. A. Blom, J. R. Jansen, J. G. Maessen, J. J. Schreuder (1999) Automated infusion of vasoactive and inotropic drugs to control arterial and pulmonary pressures during cardiac surgery. Crit. Care Med. 27, 2792–2798. doi:10.1097/00003246-199912000-00031

    Article  PubMed  CAS  Google Scholar 

  18. Iellamo F., J. A. Sala-Mercado, M. Ichinose, R. L. Hammond, M. Pallante, T. Ichinose, L. W. Stephenson, D. S. O’Leary (2007) Spontaneous baroreflex control of heart rate during exercise and muscle metaboreflex activation in heart failure. Am. J. Physiol. Heart Circ. Physiol. 293, H1929–H1936. doi:10.1152/ajpheart.00564.2007

    Article  PubMed  CAS  Google Scholar 

  19. Kim I. S., H. Izawa, T. Sobue, H. Ishihara, F. Somura, T. Nishizawa, K. Nagata, M. Iwase, M. Yokota (2002) Prognostic value of mechanical efficiency in ambulatory patients with idiopathic dilated cardiomyopathy in sinus rhythm. J. Am. Coll. Cardiol. 39, 1264–1268. doi:10.1016/S0735-1097(02)01775-8

    Article  PubMed  Google Scholar 

  20. Knaapen P., T. Germans, J. Knuuti, W. J. Paulus, P. A. Dijkmans, C. P. Allaart, A. A. Lammertsma, F. C. Visser (2007) Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation 115, 918–927. doi:10.1161/CIRCULATIONAHA.106.660639

    Article  PubMed  Google Scholar 

  21. Miyata H., E. G. Lakatta, M. D. Stern, H. S. Silverman (1992) Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ. Res. 71, 605–613

    PubMed  CAS  Google Scholar 

  22. Nikolaidis L. A., T. Hentosz, A. Doverspike, R. Huerbin, C. Stolarski, Y. T. Shen, R. P. Shannon (2002) Catecholamine stimulation is associated with impaired myocardial O2 utilization in heart failure. Cardiovasc. Res. 53, 392–404. doi:10.1016/S0008-6363(01)00490-4

    Article  PubMed  CAS  Google Scholar 

  23. Rao R. R., B. Aufderheide, B. W. Bequette (2003) Experimental studies on multiple-model predictive control for automated regulation of hemodynamic variables. IEEE Trans. Biomed. Eng. 50, 277–288. doi:10.1109/TBME.2003.808813

    Article  PubMed  Google Scholar 

  24. Schipke J. D., Y. Harasawa, S. Sugiura, J. Alexander Jr., D. Burkhoff (1991) Effect of a bradycardic agent on the isolated blood-perfused canine heart. Cardiovasc. Drugs Ther. 5, 481–488

    Article  PubMed  CAS  Google Scholar 

  25. Shen W., R. M. Gill, B. D. Jones, J. P. Zhang, A. K. Corbly, M. I. Steinberg (2002) Combined inotropic and bradycardic effects of a sodium channel enhancer in conscious dogs with heart failure: a mechanism for improved myocardial efficiency compared with dobutamine. J. Pharmacol. Exp. Ther. 303, 673–680. doi:10.1124/jpet.303.2.673

    Article  PubMed  CAS  Google Scholar 

  26. Shinke T., M. Takeuchi, H. Takaoka, M. Yokoyama (1999) Beneficial effects of heart rate reduction on cardiac mechanics and energetics in patients with left ventricular dysfunction. Jpn. Circ. J. 63, 957–964. doi:10.1253/jcj.63.957

    Article  PubMed  CAS  Google Scholar 

  27. Smiseth O. A., O. D. Mjos (1982) A reproducible and stable model of acute ischaemic left ventricular failure in dogs. Clin. Physiol. 2, 225–239. doi:10.1111/j.1475-097X.1982.tb00027.x

    Article  PubMed  CAS  Google Scholar 

  28. Suga H. (1990) Ventricular energetics. Physiol. Rev. 70, 247–277

    PubMed  CAS  Google Scholar 

  29. Suga H, Y. Yasumura, T. Nozawa, S. Futaki, Y. Igarashi, Y. Goto (1987) Prospective prediction of O2 consumption from pressure–volume area in dog hearts. Am. J. Physiol. 252, H1258–H1264

    PubMed  CAS  Google Scholar 

  30. Uemura K., A. Kamiya, I. Hidaka, T. Kawada, S. Shimizu, T. Shishido, M. Yoshizawa, M. Sugimachi, K. Sunagawa (2006) Automated drug delivery system to control systemic arterial pressure, cardiac output, and left heart filling pressure in acute decompensated heart failure. J. Appl. Physiol. 100, 1278–1286. doi:10.1152/japplphysiol.01206.2005

    Article  PubMed  CAS  Google Scholar 

  31. Uemura K., T. Kawada, A. Kamiya, T. Aiba, I. Hidaka, K. Sunagawa, M. Sugimachi (2005) Prediction of circulatory equilibrium in response to changes in stressed blood volume. Am. J. Physiol. Heart Circ. Physiol. 289, H301–H307. doi:10.1152/ajpheart.01237.2004

    Article  PubMed  CAS  Google Scholar 

  32. Uemura K., M. Sugimachi, T. Kawada, A. Kamiya, Y. Jin, K. Kashihara, K. Sunagawa (2004) A novel framework of circulatory equilibrium. Am. J. Physiol. Heart Circ. Physiol. 286, H2376–H2385. doi:10.1152/ajpheart.00654.2003

    Article  PubMed  CAS  Google Scholar 

  33. Yu C., R. J. Roy, H. Kaufman, B. W. Bequette (1992) Multiple-model adaptive predictive control of mean arterial pressure and cardiac output. IEEE Trans. Biomed. Eng. 39, 765–778. doi:10.1109/10.148385

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Grant-in-Aid for Scientific Research (C) (18500358, 20500404) from the Ministry of Education, Culture, Sports, Science and Technology, by a research grant from Nakatani Foundation of Electronic Measuring Technology Advancement, and by Health and Labour Sciences Research Grants (H19-nano-ippan-009) from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Uemura.

Appendix

Appendix

Feedback Control Algorithms of the Automatic Hemodynamic Regulator

To minimize the difference between target and subject’s S LS L = target S L—subject’s S L) and those of RR = target R—subject’s R), the proportional-integral (PI) feedback controllers adjust the infusion rates of DOB and SNP, respectively (Fig. 2). In the PI controller (Fig. 6), ΔS L (or ΔR) and the difference integrated with an integral gain (K i) are summed and scaled by a proportional gain (K p) to give the infusion rate of DOB (or SNP). PI gain constants for DOB infusion [K i = 0.01 s−1, K p = 0.06 μg kg−1 min−1 (mL min−1 kg−1)−1] and for SNP infusion [K i = 0.007 s−1, K p = −1.37 μg kg−1 min−1 (mmHg min ml−1 kg)−1] were determined on the basis of open-loop response of S L and R to the infusion of DOB and SNP, respectively.30

Figure 6
figure 6

Block diagram of the PI controller in the automated hemodynamic regulator. ΔS L and ΔR denote the difference between target and subject’s S L, and between target and subject’s R, respectively. K i and K p represent the integral and proportional gain constants, respectively. s is a Laplace operator

To minimize the difference between target and subject’s VV = target V—subject’s V), a nonlinear (N-L) feedback controller (Fig. 2) adjusts the infusion of DEX or injection of FUR based on the following “if-then” rules:

  • Rule 1: If ΔV ≥ 1 mL kg−1 then infuse DEX at 10 mL min−1

  • Rule 2: If ΔV ≤ −2 mL kg−1 then inject FUR (10 mg) at 10 min intervals

The “if-then” rules were determined on the basis of the open-loop response of V to the infusion of DEX and FUR.30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uemura, K., Sunagawa, K. & Sugimachi, M. Computationally Managed Bradycardia Improved Cardiac Energetics While Restoring Normal Hemodynamics in Heart Failure. Ann Biomed Eng 37, 82–93 (2009). https://doi.org/10.1007/s10439-008-9595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9595-8

Keywords

Navigation