Skip to main content

Advertisement

Log in

Poly-l-Lactic Acid/Hydroxyapatite Electrospun Nanocomposites Induce Chondrogenic Differentiation of Human MSC

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cartilage and bone tissue engineering has been widely investigated but is still hampered by cell differentiation and transplant integration issues within the constructs. Scaffolds represent the pivotal structure of the engineered tissue and establish an environment for neo-extracellular matrix synthesis. They can be associated to signals to modulate cell activity. In this study, considering the well reported role of hydroxyapatite (HA) in cartilage repair, we focused on the putative chondrogenic differentiation of human mesenchymal stem cells (hMSCs) following culture on membranes of electrospun fibers of poly-l-lactic acid (PLLA) loaded with nanoparticles of HA. hMSCs were seeded on PLLA/HA and bare PLLA membranes and cultured in basal medium, using chondrogenic differentiation medium as a positive control. After 14 days of culture, SOX-9 positive cells could be detected in the PLLA/HA group. Cartilage specific proteoglycan immunostain confirmed the presence of neo-extracellular-matrix production. Co-expression of CD29, a typical surface marker of MSCs and SOX-9, suggested different degrees in the differentiation process. We developed a hydroxyapatite functionalized scaffold with the aim to recapitulate the native histoarchitecture and the molecular signaling of osteochondral tissue to facilitate cell differentiation toward chondrocyte. PLLA/HA nanocomposites induced differentiation of hMSCs in a chondrocyte-like phenotype with generation of a proteoglycan based matrix. This nanocomposite could be an amenable alternative scaffold for cartilage tissue engineering using hMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alhadlaq, A., J. H. Elisseeff, L. Hong, C. G. Williams, A. I. Caplan, B. Sharma, R. A. Kopher, S. Tomkoria, D. P. Lennon, A. Lopez, J. J. Mao. (2004), Adult stem cell driven genesis of human-shaped articular condyle. Ann Biomed Eng. 32(7):911-23 doi:10.1023/B:ABME.0000032454.53116.ee

    Article  PubMed  Google Scholar 

  2. Alhadlaq, A. and J. J. Mao 2004 Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13(4): 436-48. doi:10.1089/scd.2004.13.436

    Article  PubMed  CAS  Google Scholar 

  3. Alhadlaq, A., J. J. Mao. 2005. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am 87(5): 936-44. doi:10.2106/JBJS.D.02104

    Article  PubMed  Google Scholar 

  4. Alhadlaq, A., M. Tang, J. J. Mao. 2005. Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng 11(3-4): 556-66. doi:10.1089/ten.2005.11.556

    Article  PubMed  CAS  Google Scholar 

  5. Amado, L. C., A. P. Saliaris, K. H. Schuleri, M. St John, J. S. Xie, S. Cattaneo, D. J. Durand, T. Fitton, J. Q. Kuang, G. Stewart, S. Lehrke, W. W. Baumgartner, B. J. Martin, A. W. Heldman, J. M. Hare. 2005. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102(32): 11474-9. doi:10.1073/pnas.0504388102

    Article  PubMed  CAS  Google Scholar 

  6. Auclair-Daigle, C., M. N. Bureau, J. G. Legoux, L. Yahia. 2005. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res A 73(4): 398-408. doi:10.1002/jbm.a.30284

    PubMed  CAS  Google Scholar 

  7. Badami, A. S., M. R. Kreke, M. S. Thompson, J. S. Riffle and A. S. Goldstein. 2006. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27(4): 596-606. doi:10.1016/j.biomaterials.2005.05.084

    Article  PubMed  CAS  Google Scholar 

  8. Behrens, P., T. Bitter, B. Kurz, M. Russlies. 2006. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)–5-year follow-up. Knee 13(3): 194-202. doi:10.1016/j.knee.2006.02.012

    Article  PubMed  Google Scholar 

  9. Bonzani, I. C., J. H. George, M. M. Stevens. 2006. Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol. 10(6): 568-75. doi:10.1016/j.cbpa.2006.09.009

    Article  PubMed  CAS  Google Scholar 

  10. Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumur, T. Fujinag. 2006. Gene expression profile of bovine bone marrow mesenchymal stem cell during spontaneous chondrogenic differentiation in pellet culture system. Jpn J Vet Res 53(3-4): 127-39.

    PubMed  Google Scholar 

  11. Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura and T. Fujinaga. 2006. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93(6): 1152-63. doi:10.1002/bit.20828

    Article  PubMed  CAS  Google Scholar 

  12. Buma, P., J. S. Pieper, T. van Tienen, J. L. van Susante, P. M. van der Kraan, J. H. Veerkamp, W. B. van den Berg, R. P. Veth and T. H. van Kuppevelt. 2003. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects–a study in rabbits. Biomaterials 24(19): 3255-63. doi:10.1016/S0142-9612(03)00143-1

    Article  PubMed  CAS  Google Scholar 

  13. Butnariu-Ephrat, M., D. Robinson, D. G. Mendes, N. Halperin, and Z. Nevo. Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin. Orthop. Relat. Res. (330):234–243, 1996. doi:10.1097/00003086-199609000-00031.

  14. Calvert, J. W., K. G. Marra, L. Cook, P. N. Kumta, P. A. DiMilla and L. E. Weiss. 2000. Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. J Biomed Mater Res 52(2): 279-84. doi:10.1002/1097-4636(200011)52:2<279::AID-JBM6>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  15. Chajra, H., C. F. Rousseau, D. Cortial, M. C. Ronziere, D. Herbage, F. Mallein-Gerin and A. M. Freyria. 2008. Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng. 18(1 Suppl): S33-45.

    PubMed  CAS  Google Scholar 

  16. Chiroff, R. T., R. A. White, E. W. White, J. N. Weber, D. Roy. 1977. The restoration of the articular surfaces overlying Replamineform porous biomaterials. J Biomed Mater Res 11(2): 165-78. doi:10.1002/jbm.820110203

    Article  PubMed  CAS  Google Scholar 

  17. Ciavarella, S., F. Dammacco, M. De Matteo, G. Loverro, and F. Silvestris. Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts. Stem Cells Dev. 2009 [Epub ahead of print].

  18. Cohen, S. B., C. M. Meirisch, H. A. Wilson, D. R. Diduch. 2003. The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials 24(15): 2653-60. doi:10.1016/S0142-9612(03)00058-9

    Article  PubMed  CAS  Google Scholar 

  19. Colter, D. C., I. Sekiya and D. J. Prockop. 2001. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A 98(14): 7841-5. doi:10.1073/pnas.141221698

    Article  PubMed  CAS  Google Scholar 

  20. Csaki, C., P. R. Schneider and M. Shakibaei. 2008. Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 190(5): 395-412. doi:10.1016/j.aanat.2008.07.007

    Article  PubMed  CAS  Google Scholar 

  21. De Bari, C., F. Dell’Accio and F. P. Luyten. 2004. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50(1): 142-50. doi:10.1002/art.11450

    Article  PubMed  Google Scholar 

  22. Deng, X. L., G. Sui, M. L. Zhao, G. Q. Chen and X. P. Yang. 2007. Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. J Biomater Sci Polym Ed. 18(1): 117-30. doi:10.1163/156856207779146123

    Article  PubMed  CAS  Google Scholar 

  23. Finger, A. R., C. Y. Sargent, K. O. Dulaney, S. H. Bernacki and E. G. Loboa. 2007. Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng. 13(6): 1151-8. doi:10.1089/ten.2006.0290

    Article  PubMed  CAS  Google Scholar 

  24. Genovese, J. A., C. Spadaccio, J. Langer, J. Habe, J. Jackson and A. N. Patel. 2008. Electrostimulation induces cardiomyocyte predifferentiation of fibroblasts. Biochem Biophys Res Commun 370(3): 450-5. doi:10.1016/j.bbrc.2008.03.115

    Article  PubMed  CAS  Google Scholar 

  25. J. M. Gomez-Vega, E. Saiz, A. P. Tomsia, G. W. Marshall, and S. J. Marshall (2000). Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants 1 Processing. Biomaterials 21(2):105–111. doi:10.1016/S0142-9612(99)00131-3

    Article  PubMed  CAS  Google Scholar 

  26. He, W., T. Yong, Z. W. Ma, R. Inai, W. E. Teo and S. Ramakrishna. 2006. Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng 12(9): 2457-66. doi:10.1089/ten.2006.12.2457

    Article  PubMed  CAS  Google Scholar 

  27. Hung, S. C., D. M. Yang, C. F. Chang, R. J. Lin, J. S. Wang, L. Low-Tone Ho and W. K. Yang. 2004. Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes. Int J Cancer 110(3): 313-9. doi:10.1002/ijc.20126

    Article  PubMed  CAS  Google Scholar 

  28. Hutmacher, D. W., J. T. Schantz, C. X. Lam, K. C. Tan and T. C. Lim. 2007. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4): 245-60. doi:10.1002/term.24

    Article  PubMed  CAS  Google Scholar 

  29. Ito, Y., N. Adachi, A. Nakamae, S. Yanada, M. Ochi. 2008. Transplantation of tissue-engineered osteochondral plug using cultured chondrocytes and interconnected porous calcium hydroxyapatite ceramic cylindrical plugs to treat osteochondral defects in a rabbit model. Artif Organs 32(1): 36-44.

    PubMed  Google Scholar 

  30. Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W. C. Low, D. A. Largaespada and C. M. Verfaillie. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418(6893): 41-9. doi:10.1038/nature00870

    Article  PubMed  CAS  Google Scholar 

  31. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg and J. U. Yoo. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1): 265-72. doi:10.1006/excr.1997.3858

    Article  PubMed  CAS  Google Scholar 

  32. Kaito, T., A. Myoui, K. Takaoka, N. Saito, M. Nishikawa, N. Tamai, H. Ohgushi and H. Yoshikawa. 2005. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Biomaterials 26(1): 73-9. doi:10.1016/j.biomaterials.2004.02.010

    Article  PubMed  CAS  Google Scholar 

  33. Kidoaki, S., I. K. Kwon and T. Matsuda. 2005. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26(1): 37-46. doi:10.1016/j.biomaterials.2004.01.063

    Article  PubMed  CAS  Google Scholar 

  34. Kikuchi, M., Y. Koyama, K. Takakuda, H. Miyairi, N. Shirahama and J. Tanaka. 2002. In vitro change in mechanical strength of beta-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res 62(2): 265-72. doi:10.1002/jbm.10248

    Article  PubMed  CAS  Google Scholar 

  35. Kikuchi, M., Y. Koyama, T. Yamada, Y. Imamura, T. Okada, N. Shirahama, K. Akita, K. Takakuda and J. Tanaka. 2004. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites. Biomaterials 25(28): 5979-86. doi:10.1016/j.biomaterials.2004.02.001

    Article  PubMed  CAS  Google Scholar 

  36. Kim, B. S., A. J. Putnam, T. J. Kulik and D. J. Mooney. 1998. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol Bioeng 57(1): 46-54. doi:10.1002/(SICI)1097-0290(19980105)57:1<46::AID-BIT6>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  37. Kim, T. G. and T. G. Park. 2006. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 12(2): 221-33. doi:10.1089/ten.2006.12.221

    Article  PubMed  CAS  Google Scholar 

  38. Lee, T. M., C. Y. Yang, E. Chang and R. S. Tsai. 2004. Comparison of plasma-sprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study. J Biomed Mater Res A 71(4): 652-60. doi:10.1002/jbm.a.30190

    Article  PubMed  CAS  Google Scholar 

  39. Li, Z., L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang and Z. Xiang. 2005. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med 16(3): 213-9. doi:10.1007/s10856-005-6682-3

    Article  Google Scholar 

  40. Liao, S., M. Ngiam, F. Watari, S. Ramakrishna, C. K. Chan. 2007. Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts. Bioinspir Biomim 2(3): 37-41. doi:10.1088/1748-3182/2/3/001

    Article  PubMed  CAS  Google Scholar 

  41. Liao, S., W. Wang, M. Uo, S. Ohkawa, T. Akasaka, K. Tamura, F. Cui and F. Watari 2005 A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials. 26(36): 7564-71. doi:10.1016/j.biomaterials.2005.05.050

    Article  PubMed  CAS  Google Scholar 

  42. Liao, S. S. and F. Z. Cui 2004 In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide). Tissue Eng. 10(1-2): 73-80. doi:10.1089/107632704322791718

    Article  PubMed  CAS  Google Scholar 

  43. Liao, S. S., F. Z. Cui, W. Zhang and Q. L. Feng 2004 Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater. 69(2): 158-65. doi:10.1002/jbm.b.20035

    Article  PubMed  CAS  Google Scholar 

  44. Lin, L., K. L. Chow, and Y. Leng 2009 Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 89(2): 326-35.

    PubMed  Google Scholar 

  45. Liu, Y., S. Sagi, R. Chandrasekar, L. Zhang, N. E. Hedin and H. Fong 2008 Preparation and characterization of electrospun SiO2 nanofibers. J Nanosci Nanotechnol. 8(3): 1528-36. doi:10.1166/jnn.2008.043

    Article  PubMed  CAS  Google Scholar 

  46. Luong-Van, E., L. Grondahl, K. N. Chua, K. W. Leong, V. Nurcombe and S. M. Cool 2006 Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers. Biomaterials. 27(9): 2042-50. doi:10.1016/j.biomaterials.2005.10.028

    Article  PubMed  CAS  Google Scholar 

  47. Ma, P. X., R. Zhang, G. Xiao and R. Franceschi 2001 Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res. 54(2): 284-93. doi:10.1002/1097-4636(200102)54:2<284::AID-JBM16>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  48. Ma, Z., W. He, T. Yong and S. Ramakrishna 2005 Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Tissue Eng. 11(7-8): 1149-58. doi:10.1089/ten.2005.11.1149

    Article  PubMed  CAS  Google Scholar 

  49. Ma, Z., M. Kotaki, R. Inai and S. Ramakrishna 2005 Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 11(1-2): 101-9. doi:10.1089/ten.2005.11.101

    Article  PubMed  Google Scholar 

  50. Mackay, A. M., S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester and M. F. Pittenger 1998 Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4(4): 415-28. doi:10.1089/ten.1998.4.415

    Article  PubMed  CAS  Google Scholar 

  51. Martin, I., V. P. Shastri, R. F. Padera, J. Yang, A. J. Mackay, R. Langer, G. Vunjak-Novakovic and L. E. Freed 2001 Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res. 55(2): 229-35. doi:10.1002/1097-4636(200105)55:2<229::AID-JBM1009>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  52. McManus, A. J., R. H. Doremus, R. W. Siegel and R. Bizios 2005 Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res A. 72(1): 98-106. doi:10.1002/jbm.a.30204

    Article  PubMed  Google Scholar 

  53. Mo, X. M., C. Y. Xu, M. Kotaki and S. Ramakrishna 2004 Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 25(10): 1883-90. doi:10.1016/j.biomaterials.2003.08.042

    Article  PubMed  CAS  Google Scholar 

  54. Montjovent, M. O., L. Mathieu, B. Hinz, L. L. Applegate, P. E. Bourban, P. Y. Zambelli, J. A. Manson and D. P. Pioletti 2005 Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng. 11(11-12): 1640-9. doi:10.1089/ten.2005.11.1640

    Article  PubMed  CAS  Google Scholar 

  55. Nair, L. S., S. Bhattacharyya and C. T. Laurencin 2004 Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther. 4(5): 659-68. doi:10.1517/14712598.4.5.659

    Article  PubMed  CAS  Google Scholar 

  56. Noh, H. K., S. W. Lee, J. M. Kim, J. E. Oh, K. H. Kim, C. P. Chung, S. C. Choi, W. H. Park and B. M. Min 2006 Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. 27(21): 3934-44. doi:10.1016/j.biomaterials.2006.03.016

    Article  PubMed  CAS  Google Scholar 

  57. Noth, U., K. Schupp, A. Heymer, S. Kall, F. Jakob, N. Schutze, B. Baumann, T. Barthel, J. Eulert and C. Hendrich 2005 Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy. 7(5): 447-55. doi:10.1080/14653240500319093

    Article  PubMed  CAS  Google Scholar 

  58. Oh, T., M. M. Rahman, J. H. Lim, M. S. Park, D. Y. Kim, J. H. Yoon, W. H. Kim, M. Kikuchi, J. Tanaka, Y. Koyama and O. K. Kweon 2006 Guided bone regeneration with beta-tricalcium phosphate and poly L-lactide-co-glycolide-co-epsilon-caprolactone membrane in partial defects of canine humerus. J Vet Sci. 7(1): 73-7.

    PubMed  Google Scholar 

  59. Rodrigues, C. V., P. Serricella, A. B. Linhares, R. M. Guerdes, R. Borojevic, M. A. Rossi, M. E. Duarte and M. Farina 2003 Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials. 24(27): 4987-97. doi:10.1016/S0142-9612(03)00410-1

    Article  PubMed  CAS  Google Scholar 

  60. Saldana, L., S. Sanchez-Salcedo, I. Izquierdo-Barba, F. Bensiamar, L. Munuera, M. Vallet-Regi, and N. Vilaboa 2009 Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells. Acta Biomater. 5(4): 1294-305.

    Article  PubMed  CAS  Google Scholar 

  61. Schindler, M., I. Ahmed, J. Kamal, E. K. A. Nur, T. H. Grafe, H. Young Chung and S. Meiners 2005 A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials. 26(28): 5624-31. doi:10.1016/j.biomaterials.2005.02.014

    Article  PubMed  CAS  Google Scholar 

  62. Siepe, M., P. Akhyari, A. Lichtenberg, C. Schlensak and F. Beyersdorf 2008 Stem cells used for cardiovascular tissue engineering. Eur J Cardiothorac Surg. 34(2): 242-7. doi:10.1016/j.ejcts.2008.03.067

    Article  PubMed  Google Scholar 

  63. Simon, C. G., Jr., N. Eidelman, S. B. Kennedy, A. Sehgal, C. A. Khatri and N. R. Washburn 2005 Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D,L-lactic acid) blends. Biomaterials. 26(34): 6906-15. doi:10.1016/j.biomaterials.2005.04.050

    Article  PubMed  CAS  Google Scholar 

  64. Sohier, J., L. Moroni, C. V. Blitterswijk, K. D. Groot and J. Bezemer 2008 Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opin Drug Deliv. 5(5): 543-566. doi:10.1517/17425247.5.5.543

    Article  PubMed  CAS  Google Scholar 

  65. Stevens, M. M. and J. H. George 2005 Exploring and engineering the cell surface interface. Science. 310(5751): 1135-8. doi:10.1126/science.1106587

    Article  PubMed  CAS  Google Scholar 

  66. Su, S. H., K. T. Nguyen, P. Satasiya, P. E. Greilich, L. Tang and R. C. Eberhart 2005 Curcumin impregnation improves the mechanical properties and reduces the inflammatory response associated with poly(L-lactic acid) fiber. J Biomater Sci Polym Ed. 16(3): 353-70. doi:10.1163/1568562053654077

    Article  PubMed  CAS  Google Scholar 

  67. Sui, G., X. Yang, F. Mei, X. Hu, G. Chen, X. Deng and S. Ryu 2007 Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A. 82(2): 445-54. doi:10.1002/jbm.a.31166

    PubMed  Google Scholar 

  68. Suominen, E., A. J. Aho, E. Vedel, I. Kangasniemi, E. Uusipaikka and A. Yli-Urpo 1996 Subchondral bone and cartilage repair with bioactive glasses, hydroxyapatite, and hydroxyapatite-glass composite. J Biomed Mater Res. 32(4): 543-51. doi:10.1002/(SICI)1097-4636(199612)32:4<543::AID-JBM7>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  69. Tamai, N., A. Myoui, M. Hirao, T. Kaito, T. Ochi, J. Tanaka, K. Takaoka and H. Yoshikawa 2005 A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis Cartilage. 13(5): 405-17. doi:10.1016/j.joca.2004.12.014

    Article  PubMed  Google Scholar 

  70. Tanaka, T., H. Komaki, M. Chazono and K. Fujii 2005 Use of a biphasic graft constructed with chondrocytes overlying a beta-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng. 11(1-2): 331-9. doi:10.1089/ten.2005.11.331

    Article  PubMed  CAS  Google Scholar 

  71. Tancred, D. C., A. J. Carr and B. A. McCormack 2001 The sintering and mechanical behavior of hydroxyapatite with bioglass additions. J Mater Sci Mater Med. 12(1): 81-93. doi:10.1023/A:1026773522934

    Article  CAS  Google Scholar 

  72. Tsuchiya, H., H. Kitoh, F. Sugiura and N. Ishiguro 2003 Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 301(2): 338-43. doi:10.1016/S0006-291X(02)03026-7

    Article  PubMed  CAS  Google Scholar 

  73. Tsuji, H., M. Ogiwara, S. K. Saha and T. Sakaki 2006 Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): effects of biaxial orientation. Biomacromolecules. 7(1): 380-7. doi:10.1021/bm0507453

    Article  PubMed  CAS  Google Scholar 

  74. Ushida, T., K. Furukawa, K. Toita and T. Tateishi 2002 Three-dimensional seeding of chondrocytes encapsulated in collagen gel into PLLA scaffolds. Cell Transplant. 11(5): 489-94.

    PubMed  Google Scholar 

  75. Vert, M., S. Li and H. Garreau 1992 New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids. Clin Mater. 10(1-2): 3-8. doi:10.1016/0267-6605(92)90077-7

    Article  PubMed  CAS  Google Scholar 

  76. Vert, M., G. Schwach, R. Engel and J. Coudane 1998 Something new in the field of PLA/GA bioresorbable polymers? J Control Release. 53(1-3): 85-92. doi:10.1016/S0168-3659(97)00240-X

    Article  PubMed  CAS  Google Scholar 

  77. Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan and V. M. Goldberg 1994 Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 76(4): 579-92.

    PubMed  CAS  Google Scholar 

  78. Wan, Y., Y. Wang, Z. Liu, X. Qu, B. Han, J. Bei and S. Wang 2005 Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials. 26(21): 4453-9. doi:10.1016/j.biomaterials.2004.11.016

    Article  PubMed  CAS  Google Scholar 

  79. Wei, G. and P. X. Ma 2004 Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 25(19): 4749-57. doi:10.1016/j.biomaterials.2003.12.005

    Article  PubMed  CAS  Google Scholar 

  80. Xu, C., R. Inai, M. Kotaki and S. Ramakrishna 2004 Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10(7-8): 1160-8.

    PubMed  CAS  Google Scholar 

  81. Yim, E. K., R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen and K. W. Leong 2005 Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 26(26): 5405-13. doi:10.1016/j.biomaterials.2005.01.058

    Article  PubMed  CAS  Google Scholar 

  82. Zhang, S. M., F. Z. Cui, S. S. Liao, Y. Zhu and L. Han 2003 Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite. J Mater Sci Mater Med. 14(7): 641-5. doi:10.1023/A:1024083309982

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the University of Pittsburgh Medical Center Heart, Lung & Esophageal Surgery Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Genovese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spadaccio, C., Rainer, A., Trombetta, M. et al. Poly-l-Lactic Acid/Hydroxyapatite Electrospun Nanocomposites Induce Chondrogenic Differentiation of Human MSC. Ann Biomed Eng 37, 1376–1389 (2009). https://doi.org/10.1007/s10439-009-9704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9704-3

Keywords

Navigation