Skip to main content
Log in

Estimation of the Biphasic Property in a Female’s Menstrual Cycle from Cutaneous Temperature Measured During Sleep

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a method to estimate a woman’s menstrual cycle based on the hidden Markov model (HMM). A tiny device was developed that attaches around the abdominal region to measure cutaneous temperature at 10-min intervals during sleep. The measured temperature data were encoded as a two-dimensional image (QR code, i.e., quick response code) and displayed in the LCD window of the device. A mobile phone captured the QR code image, decoded the information and transmitted the data to a database server. The collected data were analyzed by three steps to estimate the biphasic temperature property in a menstrual cycle. The key step was an HMM-based step between preprocessing and postprocessing. A discrete Markov model, with two hidden phases, was assumed to represent higher- and lower-temperature phases during a menstrual cycle. The proposed method was verified by the data collected from 30 female participants, aged from 14 to 46, over six consecutive months. By comparing the estimated results with individual records from the participants, 71.6% of 190 menstrual cycles were correctly estimated. The sensitivity and positive predictability were 91.8 and 96.6%, respectively. This objective evaluation provides a promising approach for managing premenstrual syndrome and birth control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aas, K., and L. Eikvil. Text page recognition using Grey-level features and hidden Markov models. Pattern Recogn. 29(6):977–985, 1996.

    Article  Google Scholar 

  2. Baker, F. C., and H. S. Driver. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med. 8(6):613–622, 2007.

    Article  PubMed  Google Scholar 

  3. Bauman, J. E. Basal body temperature: unreliable method of ovulation detection. Fertil. Steril. 36:792–833, 1981.

    Google Scholar 

  4. Bengio, Y. Markovian models for sequential data. Neural Comput. Surv. 2:129–162, 1999.

    Google Scholar 

  5. Carter, R. L., R. M. Abrams, and K. S. Moghissi. A statistical approach to the determination of the fertile period. Gynecol. Obstet. Invest. 13:226–234, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Carter, R. L., and B. J. Blight. A Bayesian change-point problem with an application to the prediction and detection of ovulation in women. Biometrics 37:743–751, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Chou, B. J., and E. L. Besch. A computer method for biorhythm evaluation and analysis. Biol. Rhythm Res. 5(2):149–160, 1974.

    Article  Google Scholar 

  8. Collins, W. P. Ovulation prediction and detection. IPPF Med. Bull. 16:1–2, 1982.

    PubMed  CAS  Google Scholar 

  9. Coyne, M. D., C. M. Kesick, T. J. Doherty, M. A. Kolka, and L. A. Stephenson. Circadian rhythm changes in core temperature over the menstrual cycle: method for noninvasive monitoring. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 279:1316–1320, 2000.

    Google Scholar 

  10. Dahale, S. D., and P. V. Puranik. Climatology and predictability of the spatial coverage of 5-day rainfall over Indian subdivisions. Int. J. Climatol. 20(4):443–453, 2000.

    Article  Google Scholar 

  11. Davis, M. E., and N. W. Fugo. The cause of physiologic basal temperature changes in women. J. Clin. Endocrinol. 8:550–563, 1948.

    Article  CAS  Google Scholar 

  12. Dunson, D. B. Bayesian modeling of the level and duration of fertility in the menstrual cycle. Biometrics 57(4):1067–1073, 2001.

    Article  PubMed  CAS  Google Scholar 

  13. Elkum, N. B., and J. D. Myles. Modeling biological rhythms in failure time data. J. Circadian Rhythms. 7:4–14, 2006.

    Google Scholar 

  14. Gaunard, P., C. G. Mubikangiey, C. Couvreur, and V. Fontaine. Automatic classification of environmental noise events by hidden Markov models. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 6, 1998, pp. 3609–3612.

  15. Hamilton, J. A new approach to the economic analysis of non-stationary time series and the business cycle. Econometrica 57(2):357–384, 1989.

    Article  Google Scholar 

  16. Hanneman, S. K. Measuring circadian temperature rhythm. Biol. Res. Nurs. 2(4):236–248, 2001.

    Article  PubMed  CAS  Google Scholar 

  17. Kelly, G. S. Body temperature variability (Part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern. Med. Rev. 11(4):278–293, 2006.

    PubMed  Google Scholar 

  18. Kelly, G. S. Body temperature variability (Part 2): masking influences of body temperature variability and a review of body temperature variability in disease. Altern. Med. Rev. 12(1):49–62, 2007.

    PubMed  Google Scholar 

  19. Kong, H., and E. Shwedyk. Sequence detection and channel state emission over finite state Markov channels. IEEE Trans. Vehicular Technol. 48(3):833–839, 1999.

    Article  Google Scholar 

  20. Krogh, A., M. Brown, I. Mian, K. Sjlander, and D. Haussler. Hidden Markov models in computational biology: applications to protein modeling. J. Mol. Biol. 235:1501–1531, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Kumar, K., M. Srivastava, and S. K. Mandal. A Multivariate Method for the Parameter Estimation in Biorhythms. Biom. J. 34(8):911–917, 1992.

    Article  Google Scholar 

  22. Lee, K. A. Circadian temperature rhythms in relation to menstrual cycle phase. J. Biol. Rhythms 3:255–263, 1988.

    Article  Google Scholar 

  23. Moghissi, K. S. Prediction and detection of ovulation. Fertil. Steril. 32:89–98, 1980.

    Google Scholar 

  24. Nelson, W., Y. L. Tong, J. K. Lee, and F. Halberg. Methods for cosinor-rhythmometry. Chronobiologia 6(4):305–323, 1979.

    PubMed  CAS  Google Scholar 

  25. Owen, Jr., J. A. Physiology of the menstrual cycle. Am. J. Clin. Nutr. 28:333–338, 1975.

    PubMed  CAS  Google Scholar 

  26. Padhye, N. S., and S. K. Hanneman. Cosinor analysis for temperature time series data of long duration. Biol. Res. Nurs. 9(1):30–41, 2007.

    Article  PubMed  Google Scholar 

  27. Parry, B. L., B. LeVeau, B. Mostofi, H. B. Naham, R. Loving, P. Clopton, and J. C. Gillin. Temperature circadian rhythms during the menstrual cycle and sleep deprivation in premenstrual dysphoric disorder and normal comparison subjects. J. Biol. Rhythms 12:34–46, 1997.

    Article  PubMed  CAS  Google Scholar 

  28. Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2):257–286, 1989.

    Article  Google Scholar 

  29. Rabiner, L. R., and B. Juang. An introduction to hidden Markov models. IEEE ASSP Mag. 3(1):4–16, 1986.

    Article  Google Scholar 

  30. Royston, J. P. Basal body temperature, ovulation and the risk of conception, with special reference to the lifetimes of sperm and egg. Biometrics 38:397–406, 1982.

    Article  PubMed  CAS  Google Scholar 

  31. Royston, P. Identifying the fertile phase of the human menstrual cycle. Stat. Med. 10(2):221–240, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Sund-Levander, M., C. Forsberg, and L. K. Wahren. Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand. J. Caring Sci. 16(2):122–128, 2002.

    Article  PubMed  Google Scholar 

  33. Venkataramanan, L., J. L. Walsh, R. Kuc, and F. J. Sigworth. Identification of hidden Markov models for ion channel currents—part I: colored background noise. IEEE Trans. Signal Process. 46(7):1901–1915, 1998.

    Article  Google Scholar 

  34. Wilcox, A. J., D. B. Dunson, and D. D. Baird. The timing of the “fertile window” in the menstrual cycle: day-specific estimates from a prospective study. Br. Med. J. 321:1259–1262, 2000.

    Article  CAS  Google Scholar 

  35. Wilson, A. D., and A. F. Bobick. Parametric hidden Markov models for gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(9):884–900, 1999.

    Article  Google Scholar 

  36. Zuck, T. T. The relation of basal body temperature to fertility and sterility in women. Am. J. Obstet. Gynecol. 36:998–1005, 1938.

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Innovation Technology Development Research Program under JST (Japan Science and Technology Agency) grant H17-0318, Grants-In-Aid for Scientific Research under No. 20500601 and the competitive research funding from the University of Aizu. The authors would like to thank all the anonymous participants for their enduring efforts in long-term data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Kitazawa, M. & Togawa, T. Estimation of the Biphasic Property in a Female’s Menstrual Cycle from Cutaneous Temperature Measured During Sleep. Ann Biomed Eng 37, 1827–1838 (2009). https://doi.org/10.1007/s10439-009-9746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9746-6

Keywords

Navigation