Skip to main content

Advertisement

Log in

The Effect of Pulsatile Flow on Intrathecal Drug Delivery in the Spinal Canal

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 05 August 2011

Abstract

Clinical studies have shown that drugs delivered intrathecally distribute much faster than can be accounted for by pure molecular diffusion. However, drug transport inside the cerebrospinal fluid (CSF)-filled spinal canal is poorly understood. In this study, comprehensive experimental and computational studies were conducted to quantify the effect of pulsatile CSF flow on the accelerated drug dispersion in the spinal canal. Infusion tests with a radionucleotide and fluorescent dye under stagnant and pulsatile flow conditions were conducted inside an experimental surrogate model of the human spinal canal. The tracer distributions were quantified optically and by single photon emission computed tomography (SPECT). The experimental results show that CSF flow oscillations substantially enhance fluorescent dye and radionucleotide dispersion in the spinal canal experiment. The experimental observations were interpreted by rigorous computer simulations. To demonstrate the clinical significance, the dispersion of intrathecally infused baclofen, an anti-spasticity drug, was predicted by using patient-specific spinal data and CSF flow measurements. The computational predictions are expected to enable the rational design of intrathecal drug therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Abbott, N. J., and I. A. Romero. Transporting therapeutics across the blood–brain barrier. Mol. Med. Today 2:106–113, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Airaksinen, M. S., and M. Saarma. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3:383–394, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Alam, M. I., S. Beg, A. Samad, S. Baboota, K. Kohli, J. Ali, A. Ahuja, and M. Akbar. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 40:385–403, 2010.

    Article  PubMed  CAS  Google Scholar 

  4. Aris, R. On the dispersion of a solute in pulsating flow through a tube. Proc. R. Soc. Lond. A 259:370–376, 1960.

    Article  CAS  Google Scholar 

  5. Bandyopadhyay, S., and B. Mazumder. Unsteady convective diffusion in a pulsatile flow through a channel. Acta Mech. 134:1–16, 1999.

    Article  Google Scholar 

  6. Bhadelia, R. A., A. R. Bogdan, R. F. Kaplan, and S. M. Wolpert. Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study. Neuroradiology 39:258–264, 1997.

    Google Scholar 

  7. Chatwin, P. C. On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes. J. Fluid Mech. 71:513–527, 1975.

    Article  Google Scholar 

  8. Elad, D., D. Halpern, and J. B. Grotberg. Gas dispersion in volume-cycled tube flow. I. Theory. J. Appl. Physiol. 72:312–320, 1992.

    PubMed  CAS  Google Scholar 

  9. Fettes, P. D. W., J.-R. Jansson, and J. A. W. Wildsmith. Failed spinal anaesthesia: mechanisms, management, and prevention. Br. J. Anaesth. 102:739–748, 2009.

    Google Scholar 

  10. Freund, M., M. Adwan, H. Kooijman, S. Heiland, M. Thomsen, S. Hahnel, K. Jensen, H. J. Gerner, and K. Sartor. Measurement of CSF flow in the spinal canal using MRI with an optimized MRI protocol: experimental and clinical studies. Rofo 173:306–314, 2001.

    PubMed  CAS  Google Scholar 

  11. Gaver, D. P., and J. B. Grotberg. An experimental investigation of oscillating flow in a tapered channel. J. Fluid Mech. 172:47–61, 1986.

    Article  CAS  Google Scholar 

  12. Ghafoor, V. L., M. Epshteyn, G. H. Carlson, D. M. Terhaar, O. Charry, and P. K. Phelps. Intrathecal drug therapy for long-term pain management. Am. J. Health Syst. Pharm. 64:2447–2461, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Gordon Harris, H., Jr., and S. L. Goren. Axial diffusion in a cylinder with pulsed flow. Chem. Eng. Sci. 22:1571–1576, 1967.

    Article  Google Scholar 

  14. Hassenbusch, S. J., and R. K. Portenoy. Current practices in intraspinal therapy—a survey of clinical trends and decision making. J. Pain Symptom Manage. 20:S4–S11, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. Hazra, S., A. Gupta, and P. Niyogi. On the dispersion of a solute in oscillating flow through a channel. Heat Mass Transfer 31:249–256, 1996.

    Article  CAS  Google Scholar 

  16. Henry-Feugeas, M. C., I. Idy-Peretti, B. Blanchet, D. Hassine, G. Zannoli, and E. Schouman-Claeys. Temporal and spatial assessment of normal cerebrospinal fluid dynamics with MR imaging. Magn. Reson. Imaging 11:1107–1118, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Holley, E. R., D. R. F. Harleman, and H. B. Fischer. Dispersion in homogeneous estuary flow. J. Hydraul. Div. 96:1691–1709, 1970.

    Google Scholar 

  18. Ko, H. Y., J. H. Park, Y. B. Shin, and S. Y. Baek. Gross quantitative measurements of spinal cord segments in human. Spinal Cord. 42:35–40, 2004.

    Article  PubMed  Google Scholar 

  19. Kroin, J. S., A. Ali, M. York, and R. D. Penn. The distribution of medication along the spinal canal after chronic intrathecal administration. Neurosurgery 33:226–230, 1993; discussion 30.

    Google Scholar 

  20. Kuttler, A., T. Dimke, S. Kern, G. Helmlinger, D. Stanski, and L. Finelli. Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs. J. Pharmacokinet. Pharmacodyn. 37:629–644, 2010.

    Article  PubMed  CAS  Google Scholar 

  21. Lamer, T. J. Treatment of cancer-related pain—when orally-administered medications fail. Mayo Clin. Proc. 69:473–480, 1994.

    PubMed  CAS  Google Scholar 

  22. Linninger, A. A., M. R. Somayaji, L. Zhang, M. Smitha Hariharan, and R. D. Penn. Rigorous mathematical modeling techniques for optimal delivery of macromolecules to the brain. IEEE Trans. Biomed. Eng. 55:2303–2313, 2008.

    Article  PubMed  Google Scholar 

  23. Linninger, A. A., C. Tsakiris, D. C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger, and R. Penn. Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans. Biomed. Eng. 52:557–565, 2005.

    Article  PubMed  Google Scholar 

  24. Linninger, A. A., M. Xenos, B. Sweetman, S. Ponkshe, X. Guo, and R. Penn. A mathematical model of blood, cerebrospinal fluid and brain dynamics. J. Math. Biol. 59:729–759, 2009.

    Article  PubMed  Google Scholar 

  25. Linninger, A. A., M. Xenos, D. C. Zhu, M. R. Somayaji, S. Kondapalli, and R. D. Penn. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Eng. 54:291–302, 2007.

    Article  PubMed  Google Scholar 

  26. Misra, A., S. Ganesh, A. Shahiwala, and S. P. Shah. Drug delivery to the central nervous system: a review. J. Pharm. Pharm. Sci. 6:252–273, 2003.

    PubMed  CAS  Google Scholar 

  27. Mukherjee, A., and B. S. Mazumder. Dispersion of contaminant in oscillatory flows. Acta Mech. 74:107–122, 1988.

    Article  Google Scholar 

  28. Onofrio, B. M., and T. L. Yaksh. Long-term pain relief produced by intrathecal morphine infusion in 53 patients. J. Neurosurg. 72:200–209, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Penn, R. D. Intrathecal baclofen for spasticity of spinal origin: seven years of experience. J. Neurosurg. 77:236–240, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Penn, R. D. Intrathecal medication delivery. Neurosurg. Clin. N. Am. 14:381–387, 2003.

    Article  PubMed  Google Scholar 

  31. Penn, R. D., S. M. Savoy, D. Corcos, M. Latash, G. Gottlieb, B. Parke, and J. S. Kroin. Intrathecal baclofen for severe spinal spasticity. N. Engl. J. Med. 320:1517–1521, 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Piechnik, S. K., P. E. Summers, P. Jezzard, and J. V. Byrne. Magnetic resonance measurement of blood and CSF flow rates with phase contrast—normal values, repeatability and CO2 reactivity. In: Acta Neurochirurgica Supplements, edited by H. J. Steiger. Vienna: Springer, 2009, pp. 263–270.

    Google Scholar 

  33. Rodeheffer, R. J., G. Gerstenblith, L. C. Becker, J. L. Fleg, M. L. Weisfeldt, and E. G. Lakatta. Exercise cardiac-output is maintained with advancing age in healthy-human subjects—cardiac dilatation and increased stroke volume compensate for a diminished heart-rate. Circulation 69:203–213, 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Ros, L., J. Mota, A. Guedea, and D. Bidgood. Quantitative measurements of the spinal cord and canal by MR imaging and myelography. Eur. Radiol. 8:966–970, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Sawatsky, N. G., and D. W. Oscarson. Diffusion of technetium in dense bentonite. Water Air Soil Pollut. 57–58:449–456, 1991.

    Article  Google Scholar 

  36. Sindhwani, N., O. Ivanchenko, E. Lueshen, K. Prem, and A. A. Linninger. Methods for determining agent concentration profiles in agarose gel during convection-enhanced delivery. IEEE Trans. Biomed. Eng. 58:626–632, 2011.

    Article  PubMed  Google Scholar 

  37. Smith, R. Contaminant dispersion in oscillatory flows. J. Fluid Mech. 114:379–398, 1982.

    Article  Google Scholar 

  38. Somayaji, M. R., M. Xenos, L. Zhang, M. Mekarski, and A. A. Linninger. Systematic design of drug delivery therapies. Comput. Chem. Eng. 32:89–98, 2008.

    Article  CAS  Google Scholar 

  39. Stearns, L., R. Boortz-Marx, S. Du Pen, G. Friehs, M. Gordon, M. Halyard, L. Herbst, and J. Kiser. Intrathecal drug delivery for the management of cancer pain: a multidisciplinary consensus of best clinical practices. J. Support Oncol. 3:399–408, 2005.

    PubMed  CAS  Google Scholar 

  40. Stienstra, R., and N. M. Greene. Factors affecting the subarachnoid spread of local anesthetic solutions. Reg. Anesth. Pain Med. 16:1–6, 1991.

    CAS  Google Scholar 

  41. Stockman, H. W. Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space. J. Biomech. Eng. 128:106–114, 2006.

    Article  PubMed  Google Scholar 

  42. Stockman, H. W. Effect of anatomical fine structure on the dispersion of solutes in the spinal subarachnoid space. J. Biomech. Eng. 129:666–675, 2007.

    Article  PubMed  Google Scholar 

  43. Sweetman, B., and A. A. Linninger. Cerebrospinal fluid flow dynamics in the central nervous system. Ann. Biomed. Eng. 39:12, 2010.

    Google Scholar 

  44. Sykova, E., and C. Nicholson. Diffusion in brain extracellular space. Physiol. Rev. 88:1277–1340, 2008.

    Article  PubMed  CAS  Google Scholar 

  45. Watson, E. J. Diffusion in oscillatory pipe flow. J. Fluid Mech. 133:233–244, 1983.

    Article  CAS  Google Scholar 

  46. Yasuda, H. Longitudinal dispersion of matter due to the shear effect of steady and oscillatory currents. J. Fluid Mech. 148:383–403, 1984.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Amjad Ali at the Nuclear Medicine Department, Rush University medical center for facilitating the SPECT nuclear medicine experiments. We also appreciate the useful discussions on baclofen with Dr. R. Penn. Timothy J. Harris Jr. is gratefully indebted to NSF REU program (NSF EEC 0754590, PI A.A. Linninger) for having supported his undergraduate research during the summer of 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Linninger.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-011-0376-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hettiarachchi, H.D.M., Hsu, Y., Harris, T.J. et al. The Effect of Pulsatile Flow on Intrathecal Drug Delivery in the Spinal Canal. Ann Biomed Eng 39, 2592–2602 (2011). https://doi.org/10.1007/s10439-011-0346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0346-x

Keywords

Navigation