Skip to main content
Log in

Deterioration of Stress Distribution Due to Tunnel Creation in Single-Bundle and Double-Bundle Anterior Cruciate Ligament Reconstructions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bone tunnel enlargement is a common effect associated with knee laxity after anterior cruciate ligament (ACL) reconstruction. Nevertheless, its exact pathomechanism remains controversial. One of the possible reasons could be bone remodeling due to tunnel creation, which changes the stress environment in the joint. The present study aims to characterize the deteriorated stress distribution on the articular surface, which is due to tunnel creation after single-bundle or double-bundle ACL reconstruction. The stress distributions in the knee following ACL reconstruction under the compression, rotation, and valgus torques were calculated using a validated three-dimensional finite element (FE) model. The results indicate that, (a) under compression, von Mises stress is decreased at lateral and posteromedial regions of single/anteromedial (AM) tunnel, whereas it is increased at anterior region of single/AM tunnel in tibial subchondral bone; (b) the concentration of tensile stress is transferred from the articular surface to the location of graft fixation, and tensile stress in subchondral plate is decreased after ACL reconstruction; (c) severe stress concentration occurs between AM and posterolateral tunnels following the double-bundle reconstruction, which may contribute to the tunnel communication after surgery. In summary, the present study affirms that the deterioration of stress distribution occurs near the articular surface, which may cause the collapse of the tunnel wall, and lead to tunnel enlargement. The present study provides an insight into the effect of tunnel creation on articular stress deterioration after single-bundle or double-bundle ACL reconstruction. These findings provide knowledge on the effect of tunnel enlargement after ACL reconstruction in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Abaqus Analysis User’s Manual. In: The Documentation for Abaqus 6.10, Vol. V, Part IX. USA: Simulia, Inc., pp. 34.1.2–3.

  2. Abaqus Analysis User’s Manual. In: The Documentation for Abaqus 6.10, Vol. IV, Part VI. USA: Simulia, Inc., pp. 28.1.5–64.

  3. Au, A. G., et al. A three-dimensional finite element stress analysis for tunnel placement and buttons in anterior cruciate ligament reconstructions. J. Biomech. 38(4):827–832, 2005.

    Article  PubMed  Google Scholar 

  4. Blankevoort, L., et al. Articular contact in a three-dimensional model of the knee. J. Biomech. 24(11):1019–1031, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Boyd, S. K., R. Muller, and R. F. Zernicke. Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J. Bone Miner. Res. 17(4):687–694, 2002.

    Article  PubMed  Google Scholar 

  6. Boyle, C., and I. Y. Kim. Three-dimensional micro-level computational study of Wolff’s law via trabecular bone remodeling in the human proximal femur using design space topology optimization. J. Biomech. 44(5):935–942, 2011.

    Article  PubMed  Google Scholar 

  7. Carter, D. R., T. Orr, and D. P. Fyhrie. Relationships between loading history and femoral cancellous bone architecture. J. Biomech. 22(3):231–244, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Castañeda, S., J. Roman-Blas, R. Largo, and G. Herrero-Beaumont. Subchondral bone as a key target for osteoarthritis treatment. Biochem. Pharmacol. 83(3):315–323, 2011.

    Article  PubMed  Google Scholar 

  9. Chhabra, A., et al. Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J. Bone Joint Surg. Am. 88(Suppl 4):2–10, 2006.

    Article  PubMed  Google Scholar 

  10. Donahue, T. L., et al. A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124(3):273–280, 2002.

    Article  PubMed  Google Scholar 

  11. Ferretti, M., et al. Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23(11):1218–1225, 2007.

    Article  PubMed  Google Scholar 

  12. Frost, H. M. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod. 74(1):3–15, 2004.

    PubMed  Google Scholar 

  13. Fu, F. H., et al. Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am. J. Sports Med. 28(1):124–130, 2000.

    PubMed  CAS  Google Scholar 

  14. Fukubayashi, T., and H. Kurosawa. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop. Scand. 51(6):871–879, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Goulet, R. W., S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27(4):375–389, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Huiskes, R., et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20(11–12):1135–1150, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Jagodzinski, M., et al. Analysis of forces of ACL reconstructions at the tunnel entrance: is tunnel enlargement a biomechanical problem? J. Biomech. 38(1):23–31, 2005.

    Article  PubMed  CAS  Google Scholar 

  18. Kannus, P., and M. Jarvinen. Conservatively treated tears of the anterior cruciate ligament. Long-term results. J. Bone Joint Surg. Am. 69(7):1007–1012, 1987.

    PubMed  CAS  Google Scholar 

  19. Kopf, S., et al. Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J. Bone Joint Surg. Am. 92(4):871–881, 2010.

    Article  PubMed  Google Scholar 

  20. Kopf, S., et al. The ability of 3 different approaches to restore the anatomic anteromedial bundle femoral insertion site during anatomic anterior cruciate ligament reconstruction. Arthroscopy 27(2):200–206, 2011.

    Article  PubMed  Google Scholar 

  21. Kutzner, I., et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43(11):2164–2173, 2010.

    Article  PubMed  CAS  Google Scholar 

  22. Li, G., J. Suggs, and T. Gill. The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation. Ann. Biomed. Eng. 30(5):713–720, 2002.

    Article  PubMed  Google Scholar 

  23. Li, G., et al. A validated three-dimensional computational model of a human knee joint. J. Biomech. Eng. 121(6):657–662, 1999.

    Article  PubMed  CAS  Google Scholar 

  24. Li, R. T., et al. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am. J. Sports Med. 39(12):2595–2603, 2011.

    Article  PubMed  Google Scholar 

  25. Louboutin, H., et al. Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee 16(4):239–244, 2009.

    Article  PubMed  Google Scholar 

  26. Mellal, A., et al. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin. Oral Implants Res. 15(2):239–248, 2004.

    Article  PubMed  CAS  Google Scholar 

  27. Milz, S., and R. Putz. Quantitative morphology of the subchondral plate of the tibial plateau. J. Anat. 185:103–110, 1994.

    PubMed  Google Scholar 

  28. Netravali, N. A., et al. The effect of kinematic and kinetic changes on meniscal strains during gait. J. Biomech. Eng. 133(1):011006, 2011.

    Article  PubMed  Google Scholar 

  29. Park, S., and G. A. Ateshian. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response. J. Biomech. Eng. 128(4):623–630, 2006.

    Article  PubMed  Google Scholar 

  30. Pena, E., et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39(9):1686–1701, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Pombo, M. W., W. Shen, and F. H. Fu. Anatomic double-bundle anterior cruciate ligament reconstruction: where are we today? Arthroscopy 24(10):1168–1177, 2008.

    Article  PubMed  Google Scholar 

  32. Radin, E. L., and R. M. Rose. Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. Relat. Res. 213:34–40, 1986.

    PubMed  Google Scholar 

  33. Radin, E. L., et al. The role of bone changes in the degeneration of articular cartilage in osteoarthrosis. Acta Orthop. Belg. 44(1):55–63, 1978.

    PubMed  CAS  Google Scholar 

  34. Reilly, D. T., and A. H. Burstein. The elastic and ultimate properties of compact bone tissue. J. Biomech. 8(6):393–405, 1975.

    Article  PubMed  CAS  Google Scholar 

  35. Sandberg, R., et al. Operative versus non-operative treatment of recent injuries to the ligaments of the knee. A prospective randomized study. J. Bone Joint Surg. Am. 69(8):1120–1126, 1987.

    PubMed  CAS  Google Scholar 

  36. Siebold, R. Observations on bone tunnel enlargement after double-bundle anterior cruciate ligament reconstruction. Arthroscopy 23(3):291–298, 2007.

    Article  PubMed  Google Scholar 

  37. Song, Y., et al. A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J. Biomech. 37(3):383–390, 2004.

    Article  PubMed  Google Scholar 

  38. Taylor, M., K. E. Tanner, and M. A. Freeman. Finite element analysis of the implanted proximal tibia: a relationship between the initial cancellous bone stresses and implant migration. J. Biomech. 31(4):303–310, 1998.

    Article  PubMed  CAS  Google Scholar 

  39. van Eck, C. F., et al. Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26(2):258–268, 2010.

    Article  PubMed  Google Scholar 

  40. Wilson, T. C., et al. Tunnel enlargement after anterior cruciate ligament surgery. Am. J. Sports Med. 32(2):543–549, 2004.

    Article  PubMed  Google Scholar 

  41. Wolf, J. H. Julis Wolff and his “law of bone remodeling”. Orthopade 24(5):378–386, 1995.

    PubMed  CAS  Google Scholar 

  42. Xu, Y., et al. Relation of tunnel enlargement and tunnel placement after single-bundle anterior cruciate ligament reconstruction. Arthroscopy 27(7):923–932, 2011.

    Article  PubMed  Google Scholar 

  43. Yagi, M., et al. Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am. J. Sports Med. 30(5):660–666, 2002.

    PubMed  Google Scholar 

  44. Yao, J., et al. Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading: a finite element analysis with image-based experimental validation. J. Biomech. Eng. 128(1):135–141, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Gong He for her very kind suggestions of the study design and results analysis, Dr. Kuang Guanming for advice on the surgery process, Dr. Wang Ting for advice on model development, and MR Henry Fong for editing manuscript. The present study was supported by grants from the National Natural Science Foundation of China (NSFC Grants 10925208 and 11120101001) and the National Key Lab of Virtual Reality Technology. The sponsors had no role in any aspect of the study, including data collection and analysis, manuscript preparation, or the authorization for publication.

Conflict of interest

We declare that the authors are not in any financial or personal relationship with people or organizations that may influence the present work; there is no professional or personal interest of any kind in any product, service, and/or company that may construe to influence the position presented in or the review of, the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Weijia Lu or Yubo Fan.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

J. Yao and C. Wen equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Wen, C., Cheung, J.TM. et al. Deterioration of Stress Distribution Due to Tunnel Creation in Single-Bundle and Double-Bundle Anterior Cruciate Ligament Reconstructions. Ann Biomed Eng 40, 1554–1567 (2012). https://doi.org/10.1007/s10439-012-0517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0517-4

Keywords

Navigation