Skip to main content
Log in

A Numerical Simulation Approach to Studying Anterior Cruciate Ligament Strains and Internal Forces Among Young Recreational Women Performing Valgus Inducing Stop-Jump Activities

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Anterior cruciate ligament (ACL) injuries are commonly incurred by recreational and professional women athletes during non-contact jumping maneuvers in sports like basketball and volleyball, where incidences of ACL injury is more frequent to females compared to males. What remains a numerical challenge is in vivo calculation of ACL strain and internal force. This study investigated effects of increasing stop-jump height on neuromuscular and bio-mechanical properties of knee and ACL, when performed by young female recreational athletes. The underlying hypothesis is increasing stop-jump (platform) height increases knee valgus angles and external moments which also increases ACL strain and internal force. Using numerical analysis tools comprised of Inverse Kinematics, Computed Muscle Control and Forward Dynamics, a novel approach is presented for computing ACL strain and internal force based on (1) knee joint kinematics and (2) optimization of muscle activation, with ACL insertion into musculoskeletal model. Results showed increases in knee valgus external moments and angles with increasing stop-jump height. Increase in stop-jump height from 30 to 50 cm lead to increase in average peak valgus external moment from 40.5 ± 3.2 to 43.2 ± 3.7 Nm which was co-incidental with increase in average peak ACL strain, from 9.3 ± 3.1 to 13.7 ± 1.1%, and average peak ACL internal force, from 1056.1 ± 71.4 to 1165.4 ± 123.8 N for the right side with comparable increases in the left. In effect this study demonstrates a technique for estimating dynamic changes to knee and ACL variables by conducting musculoskeletal simulation on motion analysis data, collected from actual stop-jump tasks performed by young recreational women athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Agel, J., E. A. Arendt, and B. Bershadsky. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am. J. Sports Med. 33:524–530, 2005.

    Article  PubMed  Google Scholar 

  2. Amiri, S., D. Cooke, I. Y. Kim, and U. Wyss. Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion. Proc. Inst. Mech. Eng. H J. Eng. Med. 221:821–832, 2007.

    Article  CAS  Google Scholar 

  3. Anderson, F. C., and M. G. Pandy. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2:201–231, 1999.

    Article  Google Scholar 

  4. Anderson, F. C., M. G. Pandy, and D. G. Hull. A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J. Biomech. Eng. 114:450–460, 1992.

    Article  PubMed  Google Scholar 

  5. Besier, T. F., D. G. Lloyd, J. L. Cochrane, and T. R. Ackland. External loading of the knee joint during running and cutting maneuvers. Med. Sci. Sports Exerc. 33:1168–1175, 2001.

    PubMed  CAS  Google Scholar 

  6. Caraffa, A., G. Cerulli, M. Projetti, G. Aisa, and A. Rizzo. Prevention of anterior cruciate ligament injuries in soccer: a prospective controlled study of proprioceptive training. Knee Surg. Sports Trauma Arthrosc. 4:19–21, 1996.

    Article  CAS  Google Scholar 

  7. Cohen, S. B., C. VanBeek, J. S. Starman, D. Armfield, J. J. Irrgang, and F. H. Fu. MRI measurement of the two bundles of the normal anterior cruciate ligament. Orthopedics 32(9), 2009. doi:10.3928/01477447-20090728-35.

  8. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, and C. T. John. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  9. Ebben, W. P., M. L. Fauth, E. J. Petushek, L. R. Garceau, E. H. Brittni, B. N. Lutsch, and C. R. Feldman. Gender-based analysis of hamstring and quadriceps muscle activation during jumping and cutting. J. Strength Cond. Res. 24(2):408–415, 2010.

    Article  PubMed  Google Scholar 

  10. Ford, K. R., G. D. Myer, and T. E. Hewett. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 35:1745–1750, 2003.

    Article  PubMed  Google Scholar 

  11. Freeman, M. A., and V. Pinskerova. The movement of the normal tibiofemoral joint. J. Biomech. 38(2):197–208, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Fukuda, Y., S. L. Woo, and J. C. Loh. A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J. Orthop. Res. 21:1107–1112, 2003.

    Article  PubMed  Google Scholar 

  13. Herrington, L., and A. Munro. Drop jump landing knee valgus angle; normative data in a physically active population. Phys. Ther. Sport. 11:56–59, 2010.

    Article  PubMed  Google Scholar 

  14. Hewett, T. E., G. D. Myer, and K. R. Ford. Puberty decreases dynamic knee stability in female athletes: a potential mechanism for increased ACL injury risk. J. Bone Joint Surg. Am. 86:1601–1608, 2004.

    PubMed  Google Scholar 

  15. Hewett, T. E., G. D. Myer, K. R. Ford, S. Robert, R. S. Heidt, Jr., A. J. Colosimo, and S. G. McLean. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 34(3):445–455, 2006.

    PubMed  Google Scholar 

  16. Hewett, T. E., M. V. Paterno, and G. D. Myer. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin. Orthop. Relat. Res. 402:76–94, 2002.

    Article  PubMed  Google Scholar 

  17. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B Biol. Sci. 126(843):136–195, 1938.

    Article  Google Scholar 

  18. Hosokawa, T., K. Sato, S. Mitsueda, H. Umehara, K. Hidume, T. Okada, I. Kanisawa, A. Tsuchiya, K. Takahashi, and H. Sakai. Effects of anterior cruciate ligament injury prevention program on lower extremity alignment, isokinetic muscle strength and electromyographic activity. Br. J. Sports Med. 45(4):353–360, 2011.

    Article  Google Scholar 

  19. Iwaki, H., V. Pinskerova, and M. A. Freeman. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Jt. Surg. Br. 82(8):1189–1195, 2000.

    Article  CAS  Google Scholar 

  20. Joseph, M., D. Tiberio, J. L. Baird, T. H. Trojian, J. M. Anderson, W. J. Kraemer, and C. Marsh. Knee valgus during drop jumps in National Collegiate Athletic Association Division I female athletes: the effects of a medial post. Am. J. Sports Med. 36:285–289, 2008.

    Article  PubMed  Google Scholar 

  21. Kanamori, A., S. L. Woo, and C. B. Ma. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16:633–639, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Kellis, E., F. Arabatzi, and C. Papadopoulos. Muscle co-activation around the knee in drop jumping using the co-contraction index. J. Electromyogr. Kinesiol. 13:229–238, 2003.

    Article  PubMed  CAS  Google Scholar 

  23. Kernozek, T. W., and R. J. Ragan. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clin. Biomech. 23:279–286, 2008.

    Article  Google Scholar 

  24. Krosshaug, T., J. R. Slauterbeck, L. Engebretsen, and R. Bahr. Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand. J. Med. Sci. Sports 17(5):508–519, 2007.

    Article  PubMed  CAS  Google Scholar 

  25. Landry, S. C., K. A. McKean, C. A. Hubley-Kozey, W. D. Stanish, and K. J. Deluzio. Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated run and crosscut maneuver. Am. J. Sports Med. 35(11):1901–1911, 2007.

    Article  PubMed  Google Scholar 

  26. Li, G., T. J. Gill, L. E. DeFrate, S. Zayontz, V. Glatt, and B. Zarins. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads—an in vitro experimental study. J. Orthop. Res. 20(4):887–892, 2002.

    Article  PubMed  Google Scholar 

  27. McLean, S. G., X. Huang, A. Su, and A. J. van den Bogert. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. 19:828–838, 2004.

    Article  Google Scholar 

  28. Nagano, Y., H. Ida, M. Akai, and T. Fukuayabashi. Gender differences in knee kinematics and muscle activity during single knee drop landing. Knee 14:218–223, 2007.

    Article  PubMed  Google Scholar 

  29. Noyes, F. R. Functional properties of knee ligaments and alterations induced by knee immobilization. Clin. Orthop. Rel. Res. 123:210–242, 1977.

    Google Scholar 

  30. Noyes, F. R., S. D. Barber-Westin, C. Fleckenstein, C. Walsh, and J. West. The drop jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am. J. Sports Med. 33(2):197–207, 2005.

    Article  PubMed  Google Scholar 

  31. Pflum, M. A., K. B. Shelburne, M. R. Torry, M. J. Decker, and M. G. Pandy. Model prediction of anterior cruciate ligament force during drop-landing. Med. Sci. Sport Exerc. 36(11):1948–1949, 2004.

    Google Scholar 

  32. Seth, A., M. A. Sherman, J. A. Reinbolt, and S. L. Delp. OpenSim: a musculoskeletal modeling and simulation for in silico investigation and exchange. Procedia IUTAM 2:212–232, 2011.

    Article  Google Scholar 

  33. Shimokochi, Y., and S. J. Shultz. Mechanisms of noncontact anterior cruciate ligament injury. J. Athl. Train. 43(4):396–408, 2008.

    Article  PubMed  Google Scholar 

  34. Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J. Biomech. 42(3):280–285, 2009.

    Article  PubMed  Google Scholar 

  35. Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med. Sci. Sport Exerc. 43(8):1484–1491, 2011.

    Article  Google Scholar 

  36. Thelen, D. G., and F. C. Anderson. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39:1107–1115, 2006.

    Article  PubMed  Google Scholar 

  37. Thelen, D. G., S. L. Delp, and F. C. Anderson. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36:321–328, 2003.

    Article  PubMed  Google Scholar 

  38. Withrow, T. J., L. J. Huston, E. M. Wojtys, and J. A. Ashton-Miller. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J. Bone Jt. Surg. Am. 90:815–823, 2008.

    Article  Google Scholar 

  39. Woo, S. L., R. E. Debski, J. D. Withrow, and M. A. Janaushek. Tensile properties of the human femur-anterior cruciate ligament–tibia complex. Am. J. Sports Med. 27(4):533–543, 1999.

    PubMed  CAS  Google Scholar 

  40. Yu, B., and W. E. Garett. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 41:47–51, 2007.

    Article  Google Scholar 

  41. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4):359–411, 1989.

    PubMed  CAS  Google Scholar 

  42. Zajac, F. E. Muscle coordination of movement: a perspective. J. Biomech. 26:109–124, 1993.

    Article  PubMed  Google Scholar 

  43. Zelle, B. A., A. F. Vidal, P. U. Brucker, and F. H. Fu. Double-bundle reconstruction of the anterior cruciate ligament: anatomic and biomechanical rationale. J. Am. Acad. Orthop. Surg. 15(2):87–96, 2007.

    PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Department of Mechanical Engineering, University of Louisville, Louisville, KY for funding the stop-jump laboratory trials. We express our special thanks to Dr. A. Swank, Department of Sports Physiology, University of Louisville, Louisville, KY for helping recruit young female participants for the stop-jump trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kar.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 48 kb)

Supplementary material 2 (PDF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, J., Quesada, P.M. A Numerical Simulation Approach to Studying Anterior Cruciate Ligament Strains and Internal Forces Among Young Recreational Women Performing Valgus Inducing Stop-Jump Activities. Ann Biomed Eng 40, 1679–1691 (2012). https://doi.org/10.1007/s10439-012-0572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0572-x

Keywords

Navigation