Skip to main content
Log in

Suggested Connections Between Risk Factors of Intracranial Aneurysms: A Review

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this article is to review studies of aneurysm risk factors and the suggested hypotheses that connect the different risk factors and the underlying mechanisms governing the aneurysm natural history. The result of this work suggests that at the center of aneurysm evolution there is a cycle of wall degeneration and weakening in response to changing hemodynamic loading and biomechanic stress. This progressive wall degradation drives the geometrical evolution of the aneurysm until it stabilizes or ruptures. Risk factors such as location, genetics, smoking, co-morbidities, and hypertension seem to affect different components of this cycle. However, details of these interactions or their relative importance are still not clearly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Ahn, S., D. Shin, S. Tateshima, K. Tanishita, F. Vinuela, and S. Sinha. Fluid-induced wall shear stress in anthropomorphic brain aneurysm models: MR phase-contrast study at 3 T. J. Magn. Reson. Imaging 25:1120–1130, 2007.

    Article  PubMed  Google Scholar 

  2. Alnaes, M. S., J. Isaksen, K. A. Mardal, B. Romner, M. K. Morgan, and T. Ingebrigtsen. Computation of hemodynamics in the circle of willis. Stroke 38:2500–2505, 2007.

    Article  PubMed  Google Scholar 

  3. Amenta, P. S., S. Yadla, P. G. Campbell, M. G. Maltenfort, S. Dey, S. Ghosh, M. S. Ali, J. I. Jallo, S. I. Tjoumakaris, L. F. Gonzalez, A. S. Dumont, R. H. Rosenwasser, and P. M. Jabbour. Analysis of nonmodifiable risk factors for intracranial aneurysm rupture in a large, retrospective cohort. Neurosurgery 70:693–699, 2012; discussion 99-701.

    Google Scholar 

  4. Anderson, C., C. Ni Mhurchu, D. Scott, D. Bennett, K. Jamrozik, and G. Hankey. Triggers of subarachnoid hemorrhage: role of physical exertion, smoking, and alcohol in the Australasian Cooperative Research on subarachnoid hemorrhage study (ACROSS). Stroke 34:1771–1776, 2003.

    Article  PubMed  Google Scholar 

  5. Audibert, G., S. Bousquet, C. Charpentier, Y. Devaux, and P. M. Mertes. Subarachnoid haemorrhage: epidemiology, genomic, clinical presentation. Ann. Fr. Anesth. Reanim. 26:943–947, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Baccin, C. E., T. Krings, H. Alvarez, A. Ozanne, and P. Lasjaunias. Multiple mirror-like intracranial aneurysms. Report of a case and review of the literature. Acta Neurochir. (Wien) 148:1091–1095, 2006; discussion 95.

    Google Scholar 

  7. Baek, H., M. V. Jayaraman, and G. E. Karniadakis. Wall shear stress and pressure distribution on aneurysms and infundibulae in the posterior communicating artery bifurcation. Ann. Biomed. Eng. 37:2469–2487, 2009.

    Article  PubMed  Google Scholar 

  8. Baharoglu, M. I., C. M. Schirmer, D. A. Hoit, B. L. Gao, and A. M. Malek. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis. Stroke 41:1423–1430, 2010.

    Article  PubMed  Google Scholar 

  9. Beck, J., S. Rohde, J. Berkefeld, V. Seifert, and A. Raabe. Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg. Neurol. 65:18–25, 2006; discussion 25-7.

    Google Scholar 

  10. Beck, J., S. Rohde, M. el Beltagy, M. Zimmermann, J. Berkefeld, V. Seifert, and A. Raabe. Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography. Acta Neurochir. (Wien) 145:861–5, 2003; discussion 65.

    Google Scholar 

  11. Boissonnat, J. D., R. Chaine, P. Frey, G. Malandain, S. Salmon, E. Saltel, and M. Thiriet. From arteriographies to computational flow in saccular aneurisms: the INRIA experience. Med. Image Anal. 9:133–143, 2005.

    Article  PubMed  Google Scholar 

  12. Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002, 2008.

    Article  PubMed  Google Scholar 

  13. Campos, C., A. Churojana, G. Rodesch, H. Alvarez, and P. Lasjaunias. Multiple intracranial arterial aneurysms: a congenital metameric disease? Review of 113 consecutive patients with 280 Aa. Interv. Neuroradiol. 4:293–299, 1998.

    PubMed  CAS  Google Scholar 

  14. Carter, B. S., S. Sheth, E. Chang, M. Sethl, and C. S. Ogilvy. Epidemiology of the size distribution of intracranial bifurcation aneurysms: smaller size of distal aneurysms and increasing size of unruptured aneurysms with age. Neurosurgery 58:217–223, 2006; discussion 17-23.

    Google Scholar 

  15. Casimiro, M. V., A. W. McEvoy, L. D. Watkins, and N. D. Kitchen. A comparison of risk factors in the etiology of mirror and nonmirror multiple intracranial aneurysms. Surg. Neurol. 61:541–545, 2004.

    Article  PubMed  Google Scholar 

  16. Castro, M., C. M. Putman, and J. R. Cebral. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad. Radiol. 13:811–821, 2006.

    Article  PubMed  Google Scholar 

  17. Castro, M. A., C. M. Putman, and J. R. Cebral. Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am. J. Neuroradiol. 27:2061–2068, 2006.

    PubMed  CAS  Google Scholar 

  18. Castro, M., C. Putman, A. Radaelli, A. Frangi, and J. Cebral. Hemodynamics and rupture of terminal cerebral aneurysms. Acad. Radiol. 16:1201–1207, 2009.

    Article  PubMed  Google Scholar 

  19. Castro, M. A., C. M. Putman, M. J. Sheridan, and J. R. Cebral. Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am. J. Neuroradiol. 30:297–302, 2009.

    Article  PubMed  CAS  Google Scholar 

  20. Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol. 26:2550–2559, 2005.

    PubMed  Google Scholar 

  21. Cebral, J. R., S. Hendrickson, and C. M. Putman. Hemodynamics in a lethal basilar artery aneurysm just before its rupture. AJNR Am. J. Neuroradiol. 30:95–98, 2009.

    Article  PubMed  CAS  Google Scholar 

  22. Cebral, J. R., and H. Meng. Counterpoint: realizing the clinical utility of computational fluid dynamics–closing the gap. AJNR Am. J. Neuroradiol. 33:396–398, 2012.

    Article  PubMed  CAS  Google Scholar 

  23. Cebral, J. R., F. Mut, J. Weir, and C. Putman. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am. J. Neuroradiol. 32:145–151, 2011.

    Article  PubMed  CAS  Google Scholar 

  24. Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 32:264–270, 2011.

    Article  PubMed  CAS  Google Scholar 

  25. Cebral, J. R., M. Sheridan, and C. M. Putman. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am. J. Neuroradiol. 31:304–310, 2010.

    Article  PubMed  CAS  Google Scholar 

  26. Chien, A., S. Tateshima, J. Sayre, M. Castro, J. Cebral, and F. Vinuela. Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms. Surg Neurol 72:444–450, 2009; discussion 50.

    Google Scholar 

  27. Chien, A., M. A. Castro, S. Tateshima, J. Sayre, J. Cebral, and F. Vinuela. Quantitative hemodynamic analysis of brain aneurysms at different locations. AJNR Am. J. Neuroradiol. 30:1507–1512, 2009.

    Article  PubMed  CAS  Google Scholar 

  28. Chien, A., J. Sayre, and F. Vinuela. Comparative morphological analysis of the geometry of ruptured and unruptured aneurysms. Neurosurgery 69:349–356, 2011.

    Article  PubMed  Google Scholar 

  29. Chien, A., S. Tateshima, M. Castro, J. Sayre, J. Cebral, and F. Vinuela. Patient-specific flow analysis of brain aneurysms at a single location: comparison of hemodynamic characteristics in small aneurysms. Med. Biol. Eng. Comput. 46:1113–1120, 2008.

    Article  PubMed  Google Scholar 

  30. Chmayssani, M., J. G. Rebeiz, T. J. Rebeiz, H. H. Batjer, and B. R. Bendok Relationship of growth to aneurysm rupture in asymptomatic aneurysms ≤7 mm: a systematic analysis of the literature. Neurosurgery 68:1164–1171, 2011; discussion 71.

  31. Choi, I. S., and C. David. Giant intracranial aneurysms: development, clinical presentation and treatment. Eur. J. Radiol. 46:178–194, 2003.

    Article  PubMed  Google Scholar 

  32. Clarke, M. Systematic review of reviews of risk factors for intracranial aneurysms. Neuroradiology 50:653–664, 2008.

    Article  PubMed  Google Scholar 

  33. Clarke, G., A. D. Mendelow, and P. Mitchell. Predicting the risk of rupture of intracranial aneurysms based on anatomical location. Acta Neurochir. (Wien) 147:259-263, 2005; discussion 63.

    Google Scholar 

  34. Costalat, V., M. Sanchez, D. Ambard, L. Thines, N. Lonjon, F. Nicoud, H. Brunel, J. P. Lejeune, H. Dufour, P. Bouillot, J. P. Lhaldky, K. Kouri, F. Segnarbieux, C. A. Maurage, K. Lobotesis, M. C. Villa-Uriol, C. Zhang, A. F. Frangi, G. Mercier, A. Bonafe, L. Sarry, and F. Jourdan. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (Irras Project). J. Biomech. 44:2685–2691, 2011.

    Article  PubMed  CAS  Google Scholar 

  35. Dashti, R., J. Hernesniemi, H. Lehto, M. Niemela, M. Lehecka, J. Rinne, M. Porras, A. Ronkainen, S. Phornsuwannapha, T. Koivisto, and J. E. Jaaskelainen. Microneurosurgical management of proximal anterior cerebral artery aneurysms. Surg. Neurol. 68:366–377, 2007.

    Article  PubMed  Google Scholar 

  36. de Rooij, N. K., B. K. Velthuis, A. Algra, and G. J. Rinkel. Configuration of the circle of willis, direction of flow, and shape of the aneurysm as risk factors for rupture of intracranial aneurysms. J. Neurol. 256:45–50, 2009.

    Article  PubMed  Google Scholar 

  37. Dhar, S., M. Tremmel, J. Mocco, M. Kim, J. Yamamoto, A. H. Siddiqui, L. N. Hopkins, and H. Meng. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63:185–196, 2008; discussion 96-7.

    Google Scholar 

  38. Foutrakis, G. N., H. Yonas, and R. J. Sclabassi. Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am. J. Neuroradiol. 20:1309–1317, 1999.

    PubMed  CAS  Google Scholar 

  39. Frosen, J., A. Piippo, A. Paetau, M. Kangasniemi, M. Niemela, J. Hernesniemi, and J. Jaaskelainen. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293, 2004.

    Article  PubMed  Google Scholar 

  40. Frosen, J., R. Tulamo, A. Paetau, E. Laaksamo, M. Korja, A. Laakso, M. Niemela, and J. Hernesniemi. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 123:773–786, 2012.

    Article  PubMed  Google Scholar 

  41. Hans, F. J., T. Krings, M. H. Reinges, and M. Mull. Spontaneous regression of two supraophthalmic internal cerebral artery aneurysms following flow pattern alteration. Neuroradiology 46:469–473, 2004.

    PubMed  CAS  Google Scholar 

  42. Hashimoto, N., H. Handa, I. Nagata, and F. Hazama. Animal model of cerebral aneurysms: pathology and pathogenesis of induced cerebral aneurysms in rats. Neurol. Res. 6:33–40, 1984.

    PubMed  Google Scholar 

  43. Hassan, T., A. A. Hassan, and Y. M. Ahmed. Influence of parent vessel dominancy on fluid dynamics of anterior communicating artery aneurysms. Acta Neurochir. (Wien) 153:305–310, 2011.

    Article  Google Scholar 

  44. Hassan, T., E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, Y. Matsumoto, K. Takayama, T. Tominaga, and A. Takahashi. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. J. Neurosurg. 103:662–680, 2005.

    Article  PubMed  Google Scholar 

  45. Hayakawa, M., S. Maeda, A. Sadato, T. Tanaka, T. Kaito, N. Hattori, T. Ganaha, S. Moriya, K. Katada, K. Murayama, Y. Kato, and Y. Hirose. Detection of pulsation in ruptured and unruptured cerebral aneurysms by electrocardiographically gated 3-dimensional computed tomographic angiography with a 320-row area detector computed tomography and evaluation of its clinical usefulness. Neurosurgery 69:843–851, 2011; discussion 51.

    Google Scholar 

  46. He, W., J. Hauptman, L. Pasupuleti, A. Setton, M. G. Farrow, L. Kasper, R. Karimi, C. D. Gandhi, J. E. Catrambone, and C. J. Prestigiacomo. True posterior communicating artery aneurysms: are they more prone to rupture? A biomorphometric analysis. J. Neurosurg. 112:611–615, 2010.

    Article  PubMed  Google Scholar 

  47. Higa, T., H. Ujiie, K. Kato, H. Kamiyama, and T. Hori. Basilar artery trunk saccular aneurysms: morphological characteristics and management. Neurosurg Rev. 32:181–191, 2009; discussion 91.

    Google Scholar 

  48. Hoh, B. L., C. L. Sistrom, C. S. Firment, G. L. Fautheree, G. J. Velat, J. H. Whiting, J. F. Reavey-Cantwell, and S. B. Lewis. Bottleneck factor and height-width ratio: association with ruptured aneurysms in patients with multiple cerebral aneurysms. Neurosurgery 61:716–722, 2007; discussion 22-3.

    Google Scholar 

  49. Imbesi, S. G., and C. W. Kerber. Analysis of slipstream flow in two ruptured intracranial cerebral aneurysms. AJNR Am. J. Neuroradiol. 20:1703–1705, 1999.

    PubMed  CAS  Google Scholar 

  50. Isaksen, J. G., Y. Bazilevs, T. Kvamsdal, Y. Zhang, J. H. Kaspersen, K. Waterloo, B. Romner, and T. Ingebrigtsen. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178, 2008.

    Article  PubMed  Google Scholar 

  51. Ishikawa, T., N. Nakayama, T. Yoshimoto, T. Aoki, S. Terasaka, M. Nomura, A. Takahashi, S. Kuroda, and Y. Iwasaki. How does spontaneous hemostasis occur in ruptured cerebral aneurysms? Preliminary investigation on 247 clipping surgeries. Surg. Neurol. 66:269–275, 2006; discussion 75-6.

    Google Scholar 

  52. J. Hamada, M. Morioka, S. Yano, T. Todaka, Y. Kai, and J. Kuratsu. Clinical features of aneurysms of the posterior cerebral artery: a 15-year experience with 21 cases. Neurosurgery 56:662–670, 2005; discussion 62-70.

    Google Scholar 

  53. Jayakrishnan, V. K., G. Rodesch, H. Alvarez, and P. Lasjaunias. A case of multiple intracranial aneurysms with unruptured associated aneurysms and newly developed ruptured aneurysm. Interv. Neuroradiol. 7:259–262, 2001.

    PubMed  CAS  Google Scholar 

  54. Jeong, Y. G., Y. T. Jung, M. S. Kim, C. K. Eun, and S. H. Jang. Size and location of ruptured intracranial aneurysms. J. Korean Neurosurg. Soc. 45:11–15, 2009.

    Article  PubMed  Google Scholar 

  55. Joo, S. P., T. S. Kim, J. W. Choi, J. K. Lee, Y. S. Kim, K. S. Moon, J. H. Kim, and S. H. Kim. Characteristics and management of ruptured distal middle cerebral artery aneurysms. Acta Neurochir. (Wien) 149:661–667, 2007.

    Article  Google Scholar 

  56. Joo, S. W., S. I. Lee, S. J. Noh, Y. G. Jeong, M. S. Kim, and Y. T. Jeong. What is the significance of a large number of ruptured aneurysms smaller than 7 mm in diameter? J. Korean Neurosurg. Soc. 45:85–89, 2009.

    Article  PubMed  Google Scholar 

  57. Jou, L. D., D. H. Lee, and M. E. Mawad. Cross-flow at the anterior communicating artery and its implication in cerebral aneurysm formation. J. Biomech. 43:2189–2195, 2010.

    Article  PubMed  Google Scholar 

  58. Jou, L. D., D. H. Lee, H. Morsi, and M. E. Mawad. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am. J. Neuroradiol. 29:1761–1767, 2008.

    Article  PubMed  Google Scholar 

  59. Jou, L. D., and M. E. Mawad. Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery. Med. Biol. Eng. Comput. 49:891–899, 2011.

    Article  PubMed  Google Scholar 

  60. Jou, L. D., G. Wong, B. Dispensa, M. T. Lawton, R. T. Higashida, W. L. Young, and D. Saloner. Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am. J. Neuroradiol. 26:2357–2363, 2005.

    PubMed  Google Scholar 

  61. Juvela, S., K. Poussa, and M. Porras. Factors affecting formation and growth of intracranial aneurysms: a long-term follow-up study. Stroke 32:485–491, 2001.

    Article  PubMed  CAS  Google Scholar 

  62. Kadasi, L. M., W. C. Dent, and A. M. Malek. Cerebral aneurysm wall thickness analysis using intraoperative microscopy: effect of size and gender on thin translucent regions. J. Neurointerv. Surg. 2012. doi:10.1136/neurintsurg-2012-010285.

  63. Kallmes, D. F. Point: CFD–computational fluid dynamics or confounding factor dissemination. AJNR Am. J. Neuroradiol. 33:395–396, 2012.

    Article  PubMed  CAS  Google Scholar 

  64. Kasuya, H., T. Shimizu, K. Nakaya, A. Sasahara, T. Hori, and K. Takakura. Angeles between A1 and A2 segments of the anterior cerebral artery visualized by three-dimensional computed tomographic angiography and association of anterior communicating artery aneurysms. Neurosurgery 45:89–93, 1999; discussion 93-4.

    Google Scholar 

  65. Kataoka, K., M. Taneda, T. Asai, A. Kinoshita, M. Ito, and R. Kuroda. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401, 1999.

    Article  PubMed  CAS  Google Scholar 

  66. Kupersmith, M. J., H. Stiebel-Kalish, R. Huna-Baron, A. Setton, Y. Niimi, D. Langer, and A. Berenstein. Cavernous carotid aneurysms rarely cause subarachnoid hemorrhage or major neurologic morbidity. J. Stroke Cerebrovasc. Dis. 11:9–14, 2002.

    Article  PubMed  Google Scholar 

  67. Kwak, R., H. Niizuma, and J. Suzuki. Hemodynamics in the anterior part of the circle of willis in patients with intracranial aneurysms: a study of cerebral angiography. Tohoku J. Exp. Med. 132:69–73, 1980.

    Article  PubMed  CAS  Google Scholar 

  68. Kwak, R., T. Ohi, H. Niizuma, and J. Suzuki. Relationship between the afferent artery and the site of neck of anterior communicating artery aneurysm, and hemodynamics in the anterior part of the circle of Willis (Author’s Transl). No Shinkei Geka 6:1159–1163, 1978.

    PubMed  CAS  Google Scholar 

  69. Kyriacou, S. K., and J. D. Humphrey. Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. J. Biomech. 29:1015–1022, 1996.

    Article  PubMed  CAS  Google Scholar 

  70. Lai, H. P., K. M. Cheng, S. C. Yu, K. M. Au Yeung, Y. L. Cheung, C. M. Chan, W. S. Poon, and W. M. Lui. Size, location, and multiplicity of ruptured intracranial aneurysms in the Hong Kong Chinese population with subarachnoid haemorrhage. Hong Kong Med. J. 15:262–266, 2009.

    PubMed  CAS  Google Scholar 

  71. Lauric, A., M. I. Baharoglu, B. L. Gao, and A. M. Malek. Incremental contribution of size ratio as a discriminant for rupture status in cerebral aneurysms: comparison with size, height, and vessel diameter. Neurosurgery 70:944-951, 2012; discussion 51-2.

    Google Scholar 

  72. Lauric, A., M. I. Baharoglu, and A. M. Malek. Ruptured status discrimination performance of aspect ratio, height/width, and bottleneck factor is highly dependent on aneurysm sizing methodology. Neurosurgery 71:38–46, 2012.

    Article  PubMed  Google Scholar 

  73. Lauric, A., E. L. Miller, M. I. Baharoglu, and A. M. Malek. Rupture status discrimination in intracranial aneurysms using the centroid-radii model. IEEE Trans. Biomed. Eng. 58:2895–2903, 2011.

    Article  PubMed  Google Scholar 

  74. Lauric, A., E. L. Miller, M. I. Baharoglu, and A. M. Malek. 3D Shape analysis of intracranial aneurysms using the writhe number as a discriminant for rupture. Ann. Biomed. Eng. 39:1457–1469, 2011.

    Article  PubMed  Google Scholar 

  75. Lazzaro, M. A., B. Ouyang, and M. Chen. The role of circle of Willis anomalies in cerebral aneurysm rupture. J. Neurointerv. Surg. 4:22–26, 2012.

    Article  PubMed  Google Scholar 

  76. Lee, J. M., S. P. Joo, T. S. Kim, E. J. Go, H. Y. Choi, and B. R. Seo. Surgical management of anterior cerebral artery aneurysms of the proximal (A1) segment. World Neurosurg. 74:478–482, 2010.

    Article  PubMed  Google Scholar 

  77. Lee, J. Y., M. K. Kim, B. M. Cho, S. H. Park, and S. M. Oh. Surgical experience of the ruptured distal anterior cerebral artery aneurysms. J. Korean Neurosurg. Soc. 42:281–285, 2007.

    Article  PubMed  Google Scholar 

  78. Lehecka, M., R. Dashti, A. Laakso, J. S. van Popta, R. Romani, O. Navratil, L. Kivipelto, R. Kivisaari, M. Foroughi, J. Kokuzawa, H. Lehto, M. Niemela, J. Rinne, A. Ronkainen, T. Koivisto, J. E. Jaaskelainen, and J. Hernesniemi. Microneurosurgical management of anterior choroid artery aneurysms. World Neurosurg. 73:486–499, 2010.

    Article  PubMed  Google Scholar 

  79. Lehecka, M., R. Dashti, J. Hernesniemi, M. Niemela, T. Koivisto, A. Ronkainen, J. Rinne, and J. Jaaskelainen. Microneurosurgical management of aneurysms at the A2 segment of anterior cerebral artery (proximal pericallosal artery) and its frontobasal branches. Surg. Neurol. 70:232–246, 2008; discussion 46.

    Google Scholar 

  80. Lindekleiv, H. M., K. Valen-Sendstad, M. K. Morgan, K. A. Mardal, K. Faulder, J. H. Magnus, K. Waterloo, B. Romner, and T. Ingebrigtsen. Sex differences in intracranial arterial bifurcations. Gend. Med. 7:149–155, 2010.

    Article  PubMed  Google Scholar 

  81. Lu, G., L. Huang, X. L. Zhang, S. Z. Wang, Y. Hong, Z. Hu, and D. Y. Geng. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation. AJNR Am. J. Neuroradiol. 32:1255–1261, 2011.

    Article  PubMed  CAS  Google Scholar 

  82. Ma, B., R. E. Harbaugh, and M. L. Raghavan. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32:264–273, 2004.

    Article  PubMed  Google Scholar 

  83. MacDonald, R. L., and B. Weir. Pathophysiology and clinical evaluation of subarachnoid hemorrhage. In: Neurological Survey, edited by J. R. Youmans. Philadelphia, PA: W.B. Saunders Company, 1996.

  84. Mantha, A., C. Karmonik, G. Benndorf, C. Strother, and R. Metcalfe. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am. J. Neuroradiol. 27:1113–1118, 2006.

    PubMed  CAS  Google Scholar 

  85. Matsuda, M., K. Watanabe, A. Saito, K. Matsumura, and M. Ichikawa. Circumstances, activities, and events precipitating aneurysmal subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 16:25–29, 2007.

    Article  PubMed  Google Scholar 

  86. Meng, H., Y. Feng, S. H. Woodward, B. R. Bendok, R. A. Hanel, L. R. Guterman, and L. N. Hopkins. Mathematical model of the rupture mechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth. Neurol. Res. 27:459–465, 2005.

    Article  PubMed  Google Scholar 

  87. Metaxa, E., M. Tremmel, S. K. Natarajan, J. Xiang, R. A. Paluch, M. Mandelbaum, A. H. Siddiqui, J. Kolega, J. Mocco, and H. Meng. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 41:1774–1782, 2010.

    Article  PubMed  Google Scholar 

  88. Millan, R. D., L. Dempere-Marco, J. M. Pozo, J. R. Cebral, and A. F. Frangi. Morphological characterization of intracranial aneurysms using 3-D moment invariants. IEEE Trans. Med. Imaging 26:1270–1282, 2007.

    Article  PubMed  CAS  Google Scholar 

  89. Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U S A 12:207–214, 1926.

    Article  PubMed  CAS  Google Scholar 

  90. Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9:835–841, 1926.

    Article  PubMed  CAS  Google Scholar 

  91. Nader-Sepahi, A., M. Casimiro, J. Sen, and N. D. Kitchen. Is aspect ratio a reliable predictor of intracranial aneurysm rupture? Neurosurgery 54:1343–1347, 2004; discussion 47-8.

    Google Scholar 

  92. Nixon, A. M., M. Gunel, and B. E. Sumpio. The critical role of hemodynamics in the development of cerebral vascular disease. J. Neurosurg. 112:1240–1253, 2010.

    Article  PubMed  Google Scholar 

  93. Nystrom, S. H. On factors related to growth and rupture of intracranial aneurysms. Acta Neuropathol. 16:64–72, 1970.

    Article  PubMed  CAS  Google Scholar 

  94. Oh, Y. S., Y. M. Shon, B. S. Kim, and A. H. Cho. Long-term follow-up of incidental intracranial aneurysms in patients with acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2011. doi:10.1016/j.jstrokecerebrovasdis.2011.09.011.

  95. Ohashi, Y., T. Horikoshi, M. Sugita, T. Yagishita, and H. Nukui. Size of cerebral aneurysms and related factors in patients with subarachnoid hemorrhage. Surg. Neurol. 61:239–245, 2004; discussion 45-7.

    Google Scholar 

  96. Ohshima, T., S. Miyachi, K. Hattori, I. Takahashi, K. Ishii, T. Izumi, and J. Yoshida. Risk of aneurysmal rupture: the importance of neck orifice positioning-assessment using computational flow simulation. Neurosurgery 62:767–773, 2008; discussion 73-5.

    Google Scholar 

  97. Park, D. H., S. H. Kang, J. B. Lee, D. J. Lim, T. H. Kwon, Y. G. Chung, and H. K. Lee. Angiographic features surgical management and outcomes of proximal middle cerebral artery aneurysms. Clin. Neurol. Neurosurg. 110:544–551, 2008.

    Article  PubMed  Google Scholar 

  98. Park, J. K., C. S. Lee, K. B. Sim, J. S. Huh, and J. C. Park. Imaging of the walls of saccular cerebral aneurysms with double inversion recovery black-blood sequence. J. Magn. Reson. Imaging 30:1179–1183, 2009.

    Article  PubMed  Google Scholar 

  99. Peluso, J. P., W. J. van Rooij, M. Sluzewski, G. N. Beute, and C. B. Majoie. Posterior inferior cerebellar artery aneurysms: incidence, clinical presentation, and outcome of endovascular treatment. AJNR Am. J. Neuroradiol. 29:86–90, 2008.

    Article  PubMed  CAS  Google Scholar 

  100. Penn, D. L., R. J. Komotar, and E. Sander Connolly. Hemodynamic mechanisms underlying cerebral aneurysm pathogenesis. J. Clin. Neurosci. 18:1435–1438, 2011.

    Article  PubMed  Google Scholar 

  101. Prestigiacomo, C. J., W. He, J. Catrambone, S. Chung, L. Kasper, L. Pasupuleti, and N. Mittal. Predicting aneurysm rupture probabilities through the application of a computed tomography angiography-derived binary logistic regression model. J. Neurosurg. 110:1–6, 2009.

    Article  PubMed  Google Scholar 

  102. Qi, W., S. Wang, Y. L. Zhao, H. B. Yang, and J. Z. Zhao. Clinical characteristics and surgical treatment of patients with giant intracranial aneurysms. Chin. Med. J. (Engl) 121:1085–1088, 2008.

    Google Scholar 

  103. Qian, Y., H. Takao, M. Umezu, and Y. Murayama. Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. AJNR Am. J. Neuroradiol. 32:1948–1955, 2011.

    Article  PubMed  CAS  Google Scholar 

  104. Quintero-Oliveros, S. T., L. E. Ballesteros-Acuna, J. O. Ayala-Pimentel, and P. L. Forero-Porras. Morphological characteristics of cerebral aneurysm of Willis’ circle: a direct anatomical study. Neurocirugia (Astur) 20:110–116, 2009.

    Google Scholar 

  105. Rahman, M., J. Smietana, E. Hauck, B. Hoh, N. Hopkins, A. Siddiqui, E. I. Levy, H. Meng, and J. Mocco. Size ratio correlates with intracranial aneurysm rupture status: a prospective study. Stroke 41:916–920, 2010.

    Article  PubMed  Google Scholar 

  106. Rinkel, G. J., M. Djibuti, A. Algra, and J. van Gijn. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256, 1998.

    Article  PubMed  CAS  Google Scholar 

  107. Robertson, A. M., and P. N. Watton. Computational fluid dynamics in aneurysm research: critical reflections, future directions. AJNR Am. J. Neuroradiol. 33:992–995, 2012.

    Article  PubMed  CAS  Google Scholar 

  108. Ryu, C. W., O. K. Kwon, J. S. Koh, and E. J. Kim. Analysis of aneurysm rupture in relation to the geometric indices: aspect ratio, volume, and volume-to-neck ratio. Neuroradiology 53:883–889, 2011.

    Article  PubMed  Google Scholar 

  109. Sakamoto, S., S. Ohba, M. Shibukawa, Y. Kiura, T. Okazaki, K. Arita, and K. Kurisu. Characteristics of aneurysms of the internal carotid artery bifurcation. Acta Neurochir. (Wien) 148:139–143, 2006; discussion 43.

    Google Scholar 

  110. San Millan Ruiz, D., H. Yilmaz, A. R. Dehdashti, A. Alimenti, N. de Tribolet, and D. A. Rufenacht. The perianeurysmal environment: influence on saccular aneurysm shape and rupture. AJNR Am. J. Neuroradiol. 27:504–512, 2006.

    Google Scholar 

  111. San Millan Ruiz, D., K. Tokunaga, A. R. Dehdashti, K. Sugiu, J. Delavelle, and D. A. Rufenacht. Is the rupture of cerebral berry aneurysms influenced by the perianeurysmal environment? Acta Neurochir. Suppl 82:31–34, 2002.

    Google Scholar 

  112. Sato, K., and Y. Yoshimoto. Risk profile of intracranial aneurysms: rupture rate is not constant after formation. Stroke 42:3376–3381, 2011.

    Article  PubMed  Google Scholar 

  113. Satoh, T., M. Omi, C. Ohsako, A. Katsumata, Y. Yoshimoto, S. Tsuchimoto, K. Onoda, K. Tokunaga, K. Sugiu, and I. Date. Influence of perianeurysmal environment on the deformation and bleb formation of the unruptured cerebral aneurysm: assessment with fusion imaging of 3D MR cisternography and 3D MR angiography. AJNR Am. J. Neuroradiol. 26:2010–2018, 2005.

    PubMed  Google Scholar 

  114. Seoane, E. R., H. Tedeschi, E. de Oliveira, M. G. Siqueira, G. A. Calderon, and A. L. Rhoton, Jr. Management strategies for posterior cerebral artery aneurysms: a proposed new surgical classification. Acta Neurochir. (Wien) 139:325–331, 1997.

    Article  CAS  Google Scholar 

  115. Seshaiyer, P., and J. D. Humphrey. On the potentially protective role of contact constraints on saccular aneurysms. J. Biomech. 34:607–612, 2001.

    Article  PubMed  CAS  Google Scholar 

  116. Sforza, D. M., C. Putman, S. Tateshima, F. Vinuela, and J. Cebral. Hemodynamic characteristics of growing and stable aneurysms. In: Summer Bioengineering Conference (SBC2012) (Fajardo, Puerto Rico, 2012).

  117. Sforza, D. M., C. M. Putman, and J. R. Cebral. Hemodynamics of cerebral aneurysms. Annu. Rev. Fluid Mech. 41:91–107, 2009.

    Article  PubMed  Google Scholar 

  118. Sforza, D. M., C. Putman, and J. Cebral. Computational fluid dynamics (CFD) in brain aneurysms. Int. J. Numer. Methods Biomed. Eng. 28:801–808, 2012.

    Article  Google Scholar 

  119. Sforza, D. M., C. M. Putman, E. Scrivano, P. Lylyk, and J. R. Cebral. Blood-flow characteristics in a terminal basilar tip aneurysm prior to its fatal rupture. AJNR Am. J. Neuroradiol. 31:1127–1131, 2010.

    Article  PubMed  CAS  Google Scholar 

  120. Sforza, D. M., C. M. Putman, S. Tateshima, F. Vinuela, and J. R. Cebral. Effects of perianeurysmal environment during the growth of cerebral aneurysms: a case study. AJNR Am. J. Neuroradiol. 33:1115–1120, 2012.

    Article  PubMed  CAS  Google Scholar 

  121. Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42:550–554, 2009.

    Article  PubMed  Google Scholar 

  122. Shojima, M., S. Nemoto, A. Morita, M. Oshima, E. Watanabe, and N. Saito. Role of shear stress in the blister formation of cerebral aneurysms. Neurosurgery 67:1268–1274, 2010; discussion 74-5.

    Google Scholar 

  123. Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505, 2004.

    Article  PubMed  Google Scholar 

  124. Singh, P. K., A. Marzo, B. Howard, D. A. Rufenacht, P. Bijlenga, A. F. Frangi, P. V. Lawford, S. C. Coley, D. R. Hose, and U. J. Patel. Effects of smoking and hypertension on wall shear stress and oscillatory shear index at the site of intracranial aneurysm formation. Clin. Neurol. Neurosurg. 112:306–313, 2010.

    Article  PubMed  Google Scholar 

  125. Songsaeng, D., S. Geibprasert, R. Willinsky, M. Tymianski, K. G. TerBrugge, and T. Krings. Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment. Clin. Radiol. 65:895–901, 2010.

    Article  PubMed  CAS  Google Scholar 

  126. Stehbens, W. E. Etiology of intracranial berry aneurysms. J. Neurosurg. 70:823–831, 1989.

    Article  PubMed  CAS  Google Scholar 

  127. Stehbens, W. E. Familial intracranial aneurysms: an autopsy study. Neurosurgery 43:1258–1259, 1998.

    Article  PubMed  CAS  Google Scholar 

  128. Strother, C. M. Intracranial aneurysms, cancer, X-rays and computational fluid dynamics, AJNR Am. J. Neuroradiol. 2012. doi:10.3174/ajnr.A3163.

  129. Sugiu, K., B. Jean, D. San Millan Ruiz, J. B. Martin, J. Delavelle, and D. A. Rufenacht. Influence of the perianeurysmal environment on rupture of cerebral aneurysms. preliminary observation. Interv. Neuroradiol. 6(Suppl 1):65–70, 2000.

    Google Scholar 

  130. Sugiyama, S. I., H. Meng, K. Funamoto, T. Inoue, M. Fujimura, T. Nakayama, S. Omodaka, H. Shimizu, A. Takahashi, and T. Tominaga. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg. 78(5):462–468, 2011.

    Google Scholar 

  131. Szikora, I., G. Paal, A. Ugron, F. Nasztanovics, M. Marosfoi, Z. Berentei, Z. Kulcsar, W. Lee, I. Bojtar, and I. Nyary. Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study. Neuroradiology 50:411–421, 2008.

    Article  PubMed  Google Scholar 

  132. Takao, H., Y. Murayama, S. Otsuka, Y. Qian, A. Mohamed, S. Masuda, M. Yamamoto, and T. Abe. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 43:1436–1439, 2012.

    Article  PubMed  Google Scholar 

  133. Takeuchi, S., and T. Karino. Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries. World Neurosurg. 73:174–185, 2010; discussion e27.

    Google Scholar 

  134. Tateshima, S., Y. Murayama, J. P. Villablanca, T. Morino, K. Nomura, K. Tanishita, and F. Vinuela. In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke 34:187–192, 2003.

    Article  PubMed  Google Scholar 

  135. Tremmel, M., S. Dhar, E. I. Levy, J. Mocco, and H. Meng. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study. Neurosurgery 64:622–630; discussion 30-1, 2009.

    Google Scholar 

  136. Ujiie, H., D. W. Liepsch, M. Goetz, R. Yamaguchi, H. Yonetani, and K. Takakura. Hemodynamic study of the anterior communicating artery. Stroke 27:2086–2093, 1996; discussion 94.

    Google Scholar 

  137. Ujiie, H., Y. Tamano, K. Sasaki, and T. Hori. Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48:495–502, 2001; discussion 02-3.

    Google Scholar 

  138. Valencia, A., H. Morales, R. Rivera, E. Bravo, and M. Galvez. Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med. Eng. Phys. 30:329–340, 2008.

    Article  PubMed  Google Scholar 

  139. Valencia, A., J. Munizaga, R. Rivera, and E. Bravo. Numerical investigation of the hemodynamics in anatomically realistic lateral cerebral aneurysms. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:2616–2621, 2010.

    PubMed  Google Scholar 

  140. Valencia, C., M. C. Villa-Uriol, J. M. Pozo, and A. F. Frangi. Morphological descriptors as rupture indicators in middle cerebral artery aneurysms. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:6046–6049, 2010.

    PubMed  CAS  Google Scholar 

  141. Valen-Sendstad, K., K. A. Mardal, M. Mortensen, B. A. Reif, and H. P. Langtangen. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J. Biomech. 44:2826–2832, 2011.

    Article  PubMed  Google Scholar 

  142. van der Kolk, N. M., A. Algra, and G. J. Rinkel. Risk of aneurysm rupture at intracranial arterial bifurcations. Cerebrovasc. Dis. 30:29–35, 2010.

    Article  PubMed  Google Scholar 

  143. Vega, C., J. V. Kwoon, and S. D. Lavine. Intracranial aneurysms: current evidence and clinical practice. Am. Fam. Physician 66:601–608, 2002.

    PubMed  Google Scholar 

  144. Wang, J., Z. Sun, J. Bao, B. Zhang, Y. Jiang, and W. Lan. Characteristics and endovascular treatment of aneurysms of posterior cerebral artery. Neurol. India 59:6–11, 2011.

    Article  PubMed  Google Scholar 

  145. Weir, B., and R. L. MacDonald. Intracranial aneurysms and subarachnoid hemorrhage: an overview. In: Neurosurgery, edited by S. S. Regarchy and R. H. Wilkins. New York, NY: McGraw Hill, 1996.

  146. Weir, B., L. Disney, and T. Karrison. Sizes of ruptured and unruptured aneurysms in relation to their sites and the ages of patients. J. Neurosurg. 96:64–70, 2002.

    Article  PubMed  Google Scholar 

  147. Wiebers, D. O., J. C. Torner, and I. Meissner. Impact of unruptured intracranial aneurysms on public health in the United States. Stroke 23:1416–1419, 1992.

    Article  PubMed  CAS  Google Scholar 

  148. Wiebers, D. O., J. P. Whisnant, J. Huston, 3rd, I. Meissner, R. D. Brown, Jr., D. G. Piepgras, G. S. Forbes, K. Thielen, D. Nichols, W. M. O’Fallon, J. Peacock, L. Jaeger, N. F. Kassell, G. L. Kongable-Beckman, and J. C. Torner. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–110, 2003.

    Article  PubMed  Google Scholar 

  149. Wong, G. K., and W. S. Poon. Current status of computational fluid dynamics for cerebral aneurysms: the clinician’s perspective. J. Clin. Neurosci. 18:1285–1288, 2011.

    Article  PubMed  Google Scholar 

  150. Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152, 2011.

    Article  PubMed  Google Scholar 

  151. Xu, Y., Y. Tian, H. J. Wei, J. Chen, J. F. Dong, A. Zacharek, and J. N. Zhang. Erythropoietin increases circulating endothelial progenitor cells and reduces the formation and progression of cerebral aneurysm in rats. Neuroscience 181:292–299, 2011.

    Article  PubMed  CAS  Google Scholar 

  152. Yamaguchi, R., H. Ujiie, S. Haida, N. Nakazawa, and T. Hori. Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery. Heart Vessels 23:60–66, 2008.

    Article  PubMed  Google Scholar 

  153. Yasuda, R., C. M. Strother, W. Taki, K. Shinki, K. Royalty, K. Pulfer, and C. Karmonik. Aneurysm volume-to-ostium area ratio: a parameter useful for discriminating the rupture status of intracranial aneurysms. Neurosurgery 68:310–317, 2011; discussion 17-8.

    Google Scholar 

  154. Yu, J., Q. Wu, F. Q. Ma, J. Xu, and J. M. Zhang. Assessment of the risk of rupture of intracranial aneurysms using three-dimensional cerebral digital subtraction angiography. J. Int. Med. Res. 38:1785–1794, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grant #R01NS059063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. Cebral.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cebral, J.R., Raschi, M. Suggested Connections Between Risk Factors of Intracranial Aneurysms: A Review. Ann Biomed Eng 41, 1366–1383 (2013). https://doi.org/10.1007/s10439-012-0723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0723-0

Keywords

Navigation