Skip to main content
Log in

Age-Dependent Ascending Aorta Mechanics Assessed Through Multiphase CT

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantification of the age- and gender-specific in vivo mechanical characteristics of the ascending aorta (AA) will allow for identification of abnormalities aside from changes brought on by aging alone. Multiphase clinical CT scans of 45 male patients between the ages of 30 and 79 years were analyzed to assess age-dependent in vivo AA characteristics. The three-dimensional AA geometry for each patient was reconstructed from the CT scans for 9–10 phases throughout the cardiac cycle. The AA circumference was measured during each phase and was used to determine the corresponding diameter, circumferential strain, and wall tension at each phase. The pressure-strain modulus was also determined for each patient. The mean diastolic AA diameter was significantly smaller among young (42.6 ± 5.2 years) at 29.9 ± 2.8 mm than old patients (69.0 ± 5.2 years) at 33.2 ± 3.2 mm. The circumferential AA strain from end-diastole to peak-systole decreased from 0.092 ± 0.03 in young to 0.056 ± 0.03 in old patients. The pressure–strain modulus increased two-fold from 68.4 ± 30.5 kPa in young to 162.0 ± 93.5 kPa in old patients, and the systolic AA wall tension increased from 268.5 ± 31.3 kPa in young to 304.9 ± 49.2 kPa in old patients. The AA dilates and stiffens with aging which increases the vessel wall tension, likely predisposing aneurysm and dissection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ahlgren, A. R., F. Hansen, B. Sonesson, and T. Länne. Stiffness and diameter of the common carotid artery and abdominal aorta in women. Ultrasound Med. Biol. 23(7):983–988, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Aronberg, D. J., H. S. Glazer, K. Madsen, and S. S. Sagel. Normal thoracic aortic diameters by computed tomography. J. Comput. Assist. Tomogr. 8(2):247–250, 1984.

    CAS  PubMed  Google Scholar 

  3. Ãstrand, H., J. StÃlhand, J. Karlsson, M. Karlsson, B. Sonesson, and T. LÃnne. In vivo estimation of the contribution of elastin and collagen to the mechanical properties in the human abdominal aorta: effect of age and sex. J. Appl. Physiol. 110(1):176–187, 2011.

    Article  PubMed  Google Scholar 

  4. Biaggi, P., F. Matthews, J. Braun, V. Rousson, P. A. Kaufmann, and R. Jenni. Gender, age, and body surface area are the major determinants of ascending aorta dimensions in subjects with apparently normal echocardiograms. J. Am. Soc. Echocardiogr. 22(6):720–725, 2009.

    Article  PubMed  Google Scholar 

  5. Chue, C. D., N. C. Edwards, C. J. Ferro, J. N. Townend, and R. P. Steeds. Effects of age and chronic kidney disease on regional aortic distensibility: a cardiovascular magnetic resonance study. Int. J. Cardiol., 2013.

  6. Coady, M. A., J. A. Rizzo, G. L. Hammond, D. Mandapati, U. Darr, G. S. Kopf, and J. A. Elefteriades. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J. Thorac. Cardiovasc. Surg. 113(3):476–491, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Craiem, D., G. Chironi, M. E. Casciaro, A. Redheuil, E. Mousseaux, and A. Simon. Three-dimensional evaluation of thoracic aorta enlargement and unfolding in hypertensive men using non-contrast computed tomography. J. Hum. Hypertens. 2013. doi:10.1038/jhh.2012.69.

    PubMed  Google Scholar 

  8. Craiem, D., G. Chironi, A. Redheuil, M. Casciaro, E. Mousseaux, A. Simon, and R. Armentano. Aging impact on thoracic aorta 3D morphometry in intermediate-risk subjects: looking beyond coronary arteries with non-contrast cardiac CT. Ann. Biomed. Eng. 40(5):1028–1038, 2011.

    Article  PubMed  Google Scholar 

  9. Davies, R. R., A. Gallo, M. A. Coady, G. Tellides, D. M. Botta, B. Burke, M. P. Coe, G. S. Kopf, and J. A. Elefteriades. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann. Thorac. Surg. 81(1):169–177, 2006.

    Article  PubMed  Google Scholar 

  10. Davies, R., L. Goldstein, M. Coady, S. Tittle, J. Rizzo, G. Kopf, and J. Elefteriades. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac. Surg. 73(1):17–27, 2002.

    Article  PubMed  Google Scholar 

  11. Duprey, A., K. Khanafer, M. Schlicht, S. Avril, D. Williams, and R. Berguer. In vitro characterisation of physiological and maximum elastic modulus of ascending thoracic aortic aneurysms using uniaxial tensile testing. Eur. J. Vasc. Endovasc. Surg. 39(6):700–707, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Elefteriades, J. A., and E. A. Farkas. Thoracic aortic aneurysm: clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol. 55(9):841–857, 2010.

    Article  CAS  PubMed  Google Scholar 

  13. Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37(4):724–732, 2003.

    Article  PubMed  Google Scholar 

  14. Ganten, M., U. Krautter, W. Hosch, J. Hansmann, H. von Tengg-Kobligk, S. Delorme, H.-U. Kauczor, G. Kauffmann, and M. Bock. Age related changes of human aortic distensibility: evaluation with ECG-gated CT. Eur. Radiol. 17(3):701–708, 2007.

    Article  PubMed  Google Scholar 

  15. García-Herrera, C. M., J. M. Atienza, F. J. Rojo, E. Claes, G. V. Guinea, D. J. Celentano, C. García-Montero, and R. L. Burgos. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med. Biol. Eng. Comput. 1–8, 2012.

  16. Garcier, J. M., V. Petitcolin, M. Filaire, R. Mofid, K. Azarnouch, A. Ravel, G. Vanneuville, and L. Boyer. Normal diameter of the thoracic aorta in adults: a magnetic resonance imaging study. Surg. Radiol. Anat. 25(3):322–329, 2003.

    Article  PubMed  Google Scholar 

  17. Gillessen, T., F. Gillessen, H. Sieberth, P. Hanrath, and B. Heintz. Age-related changes in the elastic properties of the aortic tree in normotensive patients: investigation by intravascular ultrasound. Eur J Med Res 1(3):144–148, 1995.

    CAS  PubMed  Google Scholar 

  18. Hager, A., H. Kaemmerer, U. Rapp-Bernhardt, S. Blücher, K. Rapp, T. M. Bernhardt, M. Galanski, and J. Hess. Diameters of the thoracic aorta throughout life as measured with helical computed tomography. J. Thorac. Cardiovasc. Surg. 123(6):1060–1066, 2002.

    Article  PubMed  Google Scholar 

  19. Haskett, D., G. Johnson, A. Zhou, U. Utzinger, and J. Vande Geest. Microstructural and biomechanical alterations of the human aorta as a function of age and location,”. Biomech. Model. Mechanobiol. 9(6):725–736, 2010.

    Article  PubMed  Google Scholar 

  20. Hickson, S. S., M. Butlin, M. Graves, V. Taviani, A. P. Avolio, C. M. McEniery, and I. B. Wilkinson. The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc. Imaging 3(12):1247–1255, 2010.

    Article  PubMed  Google Scholar 

  21. Hunter, K. S., J. A. Albietz, P.-F. Lee, C. J. Lanning, S. R. Lammers, S. H. Hofmeister, P. H. Kao, H. J. Qi, K. R. Stenmark, and R. Shandas. In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. J. Appl. Physiol. 108(4):968–975, 2010.

    Article  PubMed  Google Scholar 

  22. Karamanoglu, M., M. F. O’Rourke, A. P. Avolio, and R. P. Kelly. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur. Heart J. 14(2):160–167, 1993.

    Article  CAS  PubMed  Google Scholar 

  23. Khanafer, K., A. Duprey, M. Zainal, M. Schlicht, D. Williams, and R. Berguer. Determination of the elastic modulus of ascending thoracic aortic aneurysm at different ranges of pressure using uniaxial tensile testing. J. Thorac. Cardiovasc. Surg. 142(3):682–686, 2011.

    Article  PubMed  Google Scholar 

  24. Klocke, R., J. R. Cockcroft, G. J. Taylor, I. R. Hall, and D. R. Blake. Arterial stiffness and central blood pressure, as determined by pulse wave analysis, in rheumatoid arthritis. Ann. Rheum. Dis. 62(5):414–418, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Koullias, G., R. Modak, M. Tranquilli, D. P. Korkolis, P. Barash, and J. A. Elefteriades. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J. Thorac. Cardiovasc. Surg. 130(3):677–683, 2005.

    Article  PubMed  Google Scholar 

  26. Lanne, T., B. Sonesson, D. Bergqvist, H. Bengtsson, and D. Gustafsson. Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. Eur. J. Vasc. Surg. 6(2):178–184, 1992.

    Article  CAS  PubMed  Google Scholar 

  27. Li, Z.-Y., U. Sadat, J. U-King-Im, T. Y. Tang, D. J. Bowden, P. D. Hayes, and J. H. Gillard. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion/clinical perspective. Circulation 122(18):1815–1822, 2010.

    Article  PubMed  Google Scholar 

  28. Mao, S. S., N. Ahmadi, B. Shah, D. Beckmann, A. Chen, L. Ngo, F. R. Flores, Y. L. Gao, and M. J. Budoff. Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad. Radiol. 15(7):827–834, 2008.

    Article  PubMed  Google Scholar 

  29. Martin, C., T. Pham, and W. Sun. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardiothorac. Surg. 40(1):28–34, 2010.

    Article  PubMed  Google Scholar 

  30. Metafratzi, Z., S. Efremidis, A. Skopelitou, and A. De Roos. The clinical significance of aortic compliance and its assessment with magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 4(4):481–491, 2002.

    Article  PubMed  Google Scholar 

  31. Mirea, O., F. Maffessanti, P. Gripari, G. Tamborini, M. Muratori, L. Fusini, C. Claudia, C. Fiorentini, I. E. Plesea, and M. Pepi. Effects of aging and body size on proximal and ascending aorta and aortic arch: inner edge-to-inner edge reference values in a large adult population by two-dimensional transthoracic echocardiography. J. Am. Soc. Echocardiogr. 26(4):419–427, 2013.

    Article  PubMed  Google Scholar 

  32. Morrison, T. M., G. Choi, C. K. Zarins, and C. A. Taylor. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J. Vasc. Surg. 49(4):1029–1036, 2009.

    Article  PubMed  Google Scholar 

  33. Nelson, A. J., S. G. Worthley, J. D. Cameron, S. R. Willoughby, C. Piantadosi, A. Carbone, B. K. Dundon, M. C. Leung, S. A. Hope, I. T. Meredith, and M. I. Worthley. Cardiovascular magnetic resonance-derived aortic distensibility: validation and observed regional differences in the elderly. J. Hypertens. 27(3):535–542, 2009.

    Article  CAS  PubMed  Google Scholar 

  34. O’Rourke, M. F. Arterial aging: pathophysiological principles. Vascular Med. 12(4):329–341, 2007.

    Article  Google Scholar 

  35. O’Rourke, M. F., and J. Hashimoto. Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50(1):1–13, 2007.

    Article  PubMed  Google Scholar 

  36. O’Rourke, M. F., M. E. Safar, and V. Dzau. The cardiovascular continuum extended: aging effects on the aorta and microvasculature. Vascular Med. 15(6):461–468, 2010.

    Article  Google Scholar 

  37. Peterson, L. H., R. E. Jensen, and J. Parnell. Mechanical properties of arteries in vivo. Circ. Res. 8(3):622–639, 1960.

    Article  Google Scholar 

  38. Redheuil, A., W. C. Yu, C. O. Wu, E. Mousseaux, A. De Cesare, R. Yan, N. Kachenoura, D. Bluemke, and J. A. C. Lima. Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension 55(2):319–326, 2010.

    Article  CAS  PubMed  Google Scholar 

  39. Roman, M. J., R. B. Devereux, R. Kramer-Fox, and J. O’Loughlin. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am. J. Cardiol. 64(8):507–512, 1989.

    Article  CAS  PubMed  Google Scholar 

  40. Rose, J. L., A. Lalande, O. Bouchot, E. B. Bourennane, P. M. Walker, P. Ugolini, C. Revol-Muller, R. Cartier, and F. Brunotte. Influence of age and sex on aortic distensibility assessed by MRI in healthy subjects. Magn. Reson. Imaging 28(2):255–263, 2010.

    Article  PubMed  Google Scholar 

  41. Siegel, E., W. E. Thai, T. Techasith, G. Major, J. Szymonifka, A. Tawakol, J. T. Nagurney, U. Hoffmann, and Q. A. Truong. Aortic distensibility and its relationship to coronary and thoracic atherosclerosis plaque and morphology by MDCT: insights from the ROMICAT trial. Int. J. Cardiol., 2013.

  42. Sokolis, D. P., E. P. Kritharis, A. T. Giagini, K. M. Lampropoulos, S. A. Papadodima, and D. C. Iliopoulos. Biomechanical response of ascending thoracic aortic aneurysms: association with structural remodelling. Comput. Methods Biomech. Biomed. Eng. 15(3):231–248, 2012.

    Article  Google Scholar 

  43. Sugawara, J., K. Hayashi, T. Yokoi, and H. Tanaka. Age-associated elongation of the ascending aorta in adults. JACC Cardiovasc. Imaging 1(6):739–748, 2008.

    Article  PubMed  Google Scholar 

  44. Taviani, V., S. S. Hickson, C. J. Hardy, C. M. McEniery, A. J. Patterson, J. H. Gillard, I. B. Wilkinson, and M. J. Graves. Age-related changes of regional pulse wave velocity in the descending aorta using Fourier velocity encoded M-mode. Magn. Reson. Med. 65(1):261–268, 2010.

    Article  Google Scholar 

  45. Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28(2):168–176, 2004.

    CAS  PubMed  Google Scholar 

  46. Vlachopoulos, C., K. Aznaouridis, and C. Stefanadis. Clinical appraisal of arterial stiffness: the Argonauts in front of the Golden Fleece. Heart 92(11):1544–1550, 2006.

    Article  CAS  PubMed  Google Scholar 

  47. Vorp, D. A., B. J. Schiro, M. P. Ehrlich, T. S. Juvonen, M. A. Ergin, and B. P. Griffith. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75(4):1210–1214, 2003.

    Article  PubMed  Google Scholar 

  48. Waddell, T. K., A. M. Dart, C. D. Gatzka, J. D. Cameron, and B. A. Kingwell. Women exhibit a greater age-related increase in proximal aortic stiffness than men. J. Hypertens. 19(12):2205–2212, 2001.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Q., G. Book, S. Contreras Ortiz, C. Primiano, R. McKay, S. Kodali, and W. Sun. Dimensional analysis of aortic root geometry during diastole using 3D models reconstructed from clinical 64-slice computed tomography images. Cardiovasc. Eng. Technol. 2(4):324–333, 2011.

    Article  Google Scholar 

  50. Wedding, K. L., M. T. Draney, R. J. Herfkens, C. K. Zarins, C. A. Taylor, and N. J. Pelc. Measurement of vessel wall strain using cine phase contrast MRI. J. Magn. Reson. Imaging 15(4):418–428, 2002.

    Article  PubMed  Google Scholar 

  51. Wilson, K. A., P. R. Hoskins, A. J. Lee, F. G. R. Fowkes, C. V. Ruckley, and A. W. Bradbury. Ultrasonic measurement of abdominal aortic aneurysm wall compliance: a reproducibility study. J. Vasc. Surg. 31(3):507–513, 2000.

    CAS  PubMed  Google Scholar 

  52. Wolak, A., H. Gransar, L. E. J. Thomson, J. D. Friedman, R. Hachamovitch, A. Gutstein, L. J. Shaw, D. Polk, N. D. Wong, R. Saouaf, S. W. Hayes, A. Rozanski, P. J. Slomka, G. Germano, and D. S. Berman. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC Cardiovasc. Imaging 1(2):200–209, 2008.

    Article  PubMed  Google Scholar 

  53. Wuyts, F. L., V. J. Vanhuyse, G. J. Langewouters, W. F. Decraemer, E. R. Raman, and S. Buyle. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40(10):1577–1597, 1995.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NIH HL108239 and HL104080 grants. Caitlin Martin is supported by NIH NRSA pre-doctoral fellowship HL112632. The authors would also like to thank Qian Wang and Alexander Werne for collecting and processing the CT image data.

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, C., Sun, W., Primiano, C. et al. Age-Dependent Ascending Aorta Mechanics Assessed Through Multiphase CT. Ann Biomed Eng 41, 2565–2574 (2013). https://doi.org/10.1007/s10439-013-0856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0856-9

Keywords

Navigation