Skip to main content
Log in

Kinematic and Kinetic Interactions During Normal and ACL-Deficient Gait: A Longitudinal In Vivo Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The interactions between different tissues within the knee joint and between different kinematic DOF and joint flexion during normal gait were investigated. These interactions change following ACL transection, in both short (4 weeks) and long (20 weeks) term. Ten skeletally mature sheep were used in control (N = 5) and experimental (N = 5) groups. The 6-DOF stifle joint motion was first measured during normal gait. The control group were then euthanized and mounted on a unique robotic testing platform for kinetic measurements. The experimental group underwent ACL transection surgery, and kinematics measurements were repeated 4 and 20 weeks post-operatively. The experimental group were then euthanized and underwent kinetic assessment using the robotic system. Results indicated significant couplings between joint flexion vs. abduction and internal tibial rotation, as well as medial, anterior, and superior tibial translations during both normal and ACL-deficient gait. Distinct kinetic interactions were also observed between different tissues within the knee joint. Direct relationships were found between ACL vs. LM/MM, and PCL vs. MCL loads during normal gait; inverse relationships were detected between ACL vs. PCL and PCL vs. LM/MM loads. These kinetic interaction patterns were considerably altered by ACL injury. Significant inter-subject variability in joint kinematics and tissue loading patterns during gait was also observed. This study provides further understanding of the in vivo function of different tissues within the knee joint and their couplings with joint kinematics during normal gait and over time following ACL transection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

DOF:

Degree of freedom

ACL:

Anterior cruciate ligament

LM:

Lateral meniscus

MM:

Medial meniscus

PCL:

Posterior cruciate ligament

MCL:

Medial collateral ligament

LCL:

Lateral collateral ligament

MRI:

Magnetic resonance imaging

ISL:

Instrumented spatial linkage

ATT:

Anterior tibial translation

OA:

Osteoarthritis

AA:

Abduction–adduction

AP:

Anterior–posterior

IE:

Internal–external

References

  1. Allen, M. J., J. E. Houlton, S. B. Adams, and N. Rushton. The surgical anatomy of the stifle joint in sheep. Vet. Surg. 27:596–605, 1998.

    Article  CAS  PubMed  Google Scholar 

  2. Andriacchi, T. P., and C. O. Dyrby. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J. Biomech. 38:293–298, 2005.

    Article  PubMed  Google Scholar 

  3. Andriacchi, T. P., A. Mundermann, R. L. Smith, E. J. Alexander, C. O. Dyrby, and S. Koo. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32:447–457, 2004.

    Article  PubMed  Google Scholar 

  4. Atarod Pilambaraei, M., E. J. O’Brien, C. B. Frank, and N. G. Shrive. There is significant load sharing and physical interaction between the anteromedial and posterolateral bundles of the ovine ACL under anterior tibial loads. Knee. 19:797–803, 2012.

    Article  CAS  PubMed  Google Scholar 

  5. Beynnon, B. D., B. C. Fleming, R. Labovitch, and B. Parsons. Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J. Orthop. Res. 20:332–337, 2002.

    Article  PubMed  Google Scholar 

  6. Chen, C. H., J. S. Li, A. Hosseini, H. R. Gadikota, T. J. Gill, and G. Li. Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait Posture. 35:467–471, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Defrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34:1240–1246, 2006.

    Article  PubMed  Google Scholar 

  8. Dyrby, C. O., and T. P. Andriacchi. Secondary motions of the knee during weight bearing and non-weight bearing activities. J. Orthop. Res. 22:794–800, 2004.

    Article  PubMed  Google Scholar 

  9. Ellis, B. J., T. J. Lujan, M. S. Dalton, and J. A. Weiss. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. J. Orthop. Res. 24:800–810, 2006.

    Article  PubMed  Google Scholar 

  10. Ferber, R., L. R. Osternig, M. H. Woollacott, N. J. Wasielewski, and J. H. Lee. Gait mechanics in chronic ACL deficiency and subsequent repair. Clin. Biomech. (Bristol, Avon). 17:274–285, 2002.

    Article  PubMed  Google Scholar 

  11. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105:136–144, 1983.

    Article  CAS  PubMed  Google Scholar 

  12. Guess, T. M., and A. Stylianou. Simulation of anterior cruciate ligament deficiency in a musculoskeletal model with anatomical knees. Open Biomed. Eng. J. 6:23–32, 2012.

    PubMed Central  PubMed  Google Scholar 

  13. Hart, J. M., B. Pietrosimone, J. Hertel, and C. D. Ingersoll. Quadriceps activation following knee injuries: a systematic review. J. Athl. Train. 45:87–97, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hurd, W. J., and L. Snyder-Mackler. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J. Orthop. Res. 5:1369–1377, 2007.

    Article  Google Scholar 

  15. Jiang, W., S. G. Gao, K. H. Li, L. Luo, Y. S. Li, W. Luo, and G. H. Lei. Impact of partial and complete rupture of anterior cruciate ligament on medial meniscus: a cadavaric study. Indian J. Orthop. 46:514–519, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Joshi, M. D., J. K. Suh, T. Marui, and S. L. Woo. Interspecies variation of compressive biomechanical properties of the meniscus. J. Biomed. Mater. Res. 29:823–828, 1995.

    Article  CAS  PubMed  Google Scholar 

  17. Kanamori, A., M. Sakane, J. Zeminski, T. W. Rudy, and S. L. Woo. In-situ force in the medial and lateral structures of intact and ACL-deficient knees. J. Orthop. Sci. 5:567–571, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Knoll, Z., R. M. Kiss, and L. Kocsis. Gait adaptation in ACL deficient patients before and after anterior cruciate ligament reconstruction surgery. J. Electromyogr. Kinesiol. 14:287–294, 2004.

    Article  PubMed  Google Scholar 

  19. Li, G., L. E. DeFrate, H. Sun, and T. J. Gill. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am. J. Sports Med. 32:1415–1420, 2004.

    Article  PubMed  Google Scholar 

  20. Li, G., R. Papannagari, L. E. DeFrate, J. D. Yoo, S. E. Park, and T. J. Gill. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation. Acta. Orthop. 78:355–360, 2007.

    Article  PubMed  Google Scholar 

  21. Manal, K., and T. S. Buchanan. An electromyogram-driven musculoskeletal model of the knee to predict in vivo joint contact forces during normal and novel gait patterns. J. Biomech. Eng. 135:021014, 2013.

    Article  PubMed  Google Scholar 

  22. Miyasaka, T., H. Matsumoto, Y. Suda, T. Otani, and Y. Toyama. Coordination of the anterior and posterior cruciate ligaments in constraining the varus–valgus and internal–external rotatory instability of the knee. J. Orthop. Sci. 7:348–353, 2002.

    Article  PubMed  Google Scholar 

  23. Moglo, K. E., and A. Shirazi-Adl. Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints. Knee. 10:265–276, 2003.

    Article  CAS  PubMed  Google Scholar 

  24. Nigg, B. M., and W. Herzog. Biomechanics of the Musculo-Skeletal System (3rd ed.). New Jersey: Wiley, 2007.

    Google Scholar 

  25. Osterhoff, G., S. Loffler, H. Steinke, C. Feja, C. Josten, and P. Hepp. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee. 18:98–103, 2011.

    Article  PubMed  Google Scholar 

  26. Papageorgiou, C. D., J. E. Gil, A. Kanamori, J. A. Fenwick, S. L. Woo, and F. H. Fu. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am. J. Sports Med. 29:226–231, 2001.

    CAS  PubMed  Google Scholar 

  27. Shelburne, K. B., M. G. Pandy, and M. R. Torry. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J. Biomech. 37:313–319, 2004.

    Article  PubMed  Google Scholar 

  28. Shelburne, K. B., M. R. Torry, and M. G. Pandy. Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 37:1948–1956, 2005.

    Article  PubMed  Google Scholar 

  29. Smith, H. C., P. Vacek, R. J. Johnson, J. R. Slauterbeck, J. Hashemi, S. Shultz, and B. D. Beynnon. Risk factors for anterior cruciate ligament injury: a review of the literature—part 2: hormonal, genetic, cognitive function, previous injury, and extrinsic risk factors. Sports Health 4:155–161, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Smith, H. C., P. Vacek, R. J. Johnson, J. R. Slauterbeck, J. Hashemi, S. Shultz, and B. D. Beynnon. Risk factors for anterior cruciate ligament injury: a review of the literature—part 1: neuromuscular and anatomic risk. Sports Health 4:69–78, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tapper, J. E., S. Fukushima, H. Azuma, C. Sutherland, L. Marchuk, et al. Dynamic in vivo three-dimensional (3D) kinematics of the anterior cruciate ligament/medial collateral ligament transected ovine stifle joint. J. Orthop. Res. 26:660–672, 2008.

    Article  PubMed  Google Scholar 

  32. Tapper, J. E., S. Fukushima, H. Azuma, G. M. Thornton, J. L. Ronsky, et al. Dynamic in vivo kinematics of the intact ovine stifle joint. J. Orthop. Res. 24:782–792, 2006.

    Article  PubMed  Google Scholar 

  33. Tapper, J. E., Y. Funakoshi, M. Hariu, L. Marchuk, G. M. Thornton, et al. ACL/MCL transection affects knee ligament insertion distance of healing and intact ligaments during gait in the Ovine model. J. Biomech. 42:1825–1833, 2009.

    Article  PubMed  Google Scholar 

  34. Tashman, S., W. Anderst, P. Kolowich, S. Havstad, and S. Arnoczky. Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J. Orthop. Res. 22:931–941, 2004.

    Article  PubMed  Google Scholar 

  35. Van de Velde, S. K., L. E. DeFrate, T. J. Gill, J. M. Moses, R. Papannagari, and G. Li. The effect of anterior cruciate ligament deficiency on the in vivo elongation of the medial and lateral collateral ligaments. Am. J. Sports Med. 35:294–300, 2007.

    Article  PubMed  Google Scholar 

  36. von Porat, A., M. Henriksson, E. Holmstrom, C. A. Thorstensson, L. Mattsson, and E. M. Roos. Knee kinematics and kinetics during gait, step and hop in males with a 16 years old ACL injury compared with matched controls. Knee Surg. Sports Traumatol. Arthrosc. 14:546–554, 2006.

    Article  Google Scholar 

  37. Woo, S. L., M. B. Fisher, and A. J. Feola. Contribution of biomechanics to management of ligament and tendon injuries. Mol. Cell. Biomech. 5:49–68, 2008.

    PubMed  Google Scholar 

  38. Woo, S. L., C. Wu, O. Dede, F. Vercillo, and S. Noorani. Biomechanics and anterior cruciate ligament reconstruction. J. Orthop. Surg. Res. 1:2, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zhang, L. Q., R. G. Shiavi, T. J. Limbird, and J. M. Minorik. Six degrees-of-freedom kinematics of ACL deficient knees during locomotion-compensatory mechanism. Gait Posture. 17:34–42, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Canadian Institutes of Health Research (CIHR), Alberta Innovates Health Solutions (AIHS), Natural Sciences and Engineering Research Council of Canada –Collaborative Research and Training Experience (NSERC-CREATE).

Conflict of interests

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Atarod.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atarod, M., Frank, C.B. & Shrive, N.G. Kinematic and Kinetic Interactions During Normal and ACL-Deficient Gait: A Longitudinal In Vivo Study. Ann Biomed Eng 42, 566–578 (2014). https://doi.org/10.1007/s10439-013-0914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0914-3

Keywords

Navigation