Skip to main content
Log in

Early Changes in Myocardial Microcirculation in Asymptomatic Hypercholesterolemic Subjects: As Detected by Perfusion CT

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 18 March 2014

Abstract

Intramyocardial microvessels show functional changes in early stages of atherosclerosis prior to epicardial coronary artery stenosis. However, clinical CT does not have adequate spatial resolution to resolve the microvessels. To clinically detect changes in the function of the intramyocardial microcirculation, the spatial heterogeneity of the distribution of myocardial perfusion (F) and intramyocardial microcirculatory blood volume (Bv) was determined by perfusion CT. Two human subject groups were studied: (i) a “Control” group (24) with no risk factors nor evidence of coronary artery disease (CAD), and (ii) an “At-Risk” group (24) with hypercholesterolemia, but no evidence of CAD. In the perfusion CT image, a region of interest (ROI) covering the left ventricular myocardium was subdivided into multiple nested ROI (nROI) of equal size and used to compute F and Bv for each nROI. No significant differences between the groups were demonstrable in overall myocardial F, or Bv. The nROI data showed significantly increased spatial heterogeneity in the “At Risk” group when compared to “Control” subjects. This study demonstrates that subresolution distribution at the microcirculatory level can be quantified with myocardial perfusion CT and significant changes in these parameters occur in hypercholesterolemic subjects before they have developed significant changes in conventional perfusion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BPM:

Beats per minute

Bv:

Blood volume (mL cm−3)

CAD:

Coronary artery disease

CO:

Cardiac output (L min−1)

CT:

Computed tomography

F:

Myocardial perfusion (mL g−1 min−1)

HU:

Hounsfield units of CT image gray scale

HR:

Heart rate (beats per minute)

LED:

Light emitting diode

nROI:

Nested region of interest

RD:

Relative dispersion (standard deviation/mean)

ROI:

Region of interest within LV wall in CT image

TAC:

Time attenuation curves

References

  1. Agatston, A. S., W. R. Janowitz, F. J. Hildner, N. R. Zusmer, M. Viamonte, Jr, and R. Detrano. Quantitation of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15:827–832, 1990.

    Article  CAS  PubMed  Google Scholar 

  2. Bassingthwaighte, J. B., and R. P. Bever. Fractal correlation in heterogeneous systems. Physica D 53:71–84, 1991.

    Article  Google Scholar 

  3. Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65:578–590, 1989.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Berne, R. M. Regulation of coronary blood flow. Physiol. Rev. 44:1–29, 1964.

    CAS  PubMed  Google Scholar 

  5. Camici, P. G., and F. Crea. Coronary microvascular dysfunction. N. Engl. J. Med. 356:830–840, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Carlson, S. K., J. P. Felmlee, C. E. Bender, R. L. Ehman, K. L. Classic, H. H. Hu, and T. L. Hoskin. Intermittent-mode CT fluoroscopy-guided biopsy of the lung or upper abdomen with breath-hold monitoring and feedback: system development and feasibility. Radiology 229:906–912, 2003.

    Article  PubMed  Google Scholar 

  7. Clauset, A., C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Rev. 51:661–703, 2009.

    Article  Google Scholar 

  8. Daghini, E., A. N. Primak, A. R. Chade, X. Zhu, E. L. Ritman, C. H. McCollough, and L. O. Lerman. Evaluation of porcine myocardial microvascular permeability and fractional vascular volume using 64-slice helical computed tomography (CT). Invest. Radiol. 42:274–282, 2007.

    Article  PubMed  Google Scholar 

  9. Dayanikli, F., D. Grambow, O. Muzik, L. Mosca, M. Rubenfire, and M. Schwaiger. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 90:808–817, 1994.

    Article  CAS  PubMed  Google Scholar 

  10. Di Carli, M. F., J. Janisse, G. Grunberger, and J. Ager. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J. Am. Coll. Cardiol. 41:1387–1393, 2003.

    Article  PubMed  Google Scholar 

  11. Dong Y., N. M. Malyar, P. E. Beighley, and E. L. Ritman. Characterization of sub-resolution microcirculatory status using whole-body CT imaging. In: Proceedings of SPIE Medical Imaging 2005: Physiology, Function and Structure from Medical Images, vol. 5746, 2005, pp. 175–183.

  12. Dong Y., and E. L. Ritman. Whole-body imaging of whole-organ, subresolution, basic functional unit (BFU) perfusion characteristics. In: Proceedings of SPIE: Development X-ray Tomography VI, vol. 7078, 2008, pp. 707806-1–707806-8.

  13. Einstein, A. J., K. W. Moser, R. C. Thompson, M. D. Cerqueira, and M. J. Henzlova. Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305, 2007.

    Article  PubMed  Google Scholar 

  14. Gonzalez-Fernadez, J. M. Theory of the measurement of the dispersion of an indicator in indicator-dilution studies. Circ. Res. 10:409–428, 1962.

    Article  Google Scholar 

  15. Gould, K. L. Quantification of coronary artery stenosis in vivo. Circ. Res. 57:341–353, 1985.

    Article  CAS  PubMed  Google Scholar 

  16. Hori, M., M. Inoue, Y. Kitakaze, K. Iwai, J. Tamai, H. Ito, A. Kitabatake, T. Sato, and T. Kamada. Role of adenosine in hyperemic response of coronary blood flow in microembolism. Am. J. Physiol. 250:H509–H518, 1986.

    CAS  PubMed  Google Scholar 

  17. Kaufmann, P. A., T. Gnecchi-Ruscone, M. di Terlizzi, K. P. Schäfers, T. F. Lüscher, and P. G. Camici. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 102:1233–1238, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. King, R. B., J. B. Bassingthwaighte, J. R. Hales, and L. B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ. Res. 57:285–295, 1985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu, Y. H., R. C. Bahn, and E. L. Ritman. Dynamic intramyocardial blood volume: evaluation with a radiological opaque marker method. Am. J. Physiol. 263:H963–H967, 1992.

    CAS  PubMed  Google Scholar 

  20. Liu, Y. H., R. C. Bahn, and E. L. Ritman. Microvascular blood volume-to-flow relationships in porcine heart wall: whole body CT evaluation in vivo. Am. J. Physiol. 269:H1820–H1826, 1995.

    CAS  PubMed  Google Scholar 

  21. Malyar, N. M., M. Goessl, P. E. Beighley, and E. L. Ritman. Relationship between arterial diameter and perfused tissue volume in myocardial microcirculation: a micro-CT-based analysis. Am. J. Physiol. Heart Circ. Physiol. 286:H2386–H2392, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Maseri, A., F. Creas, J. C. Kaski, and T. Crake. Mechanisms of angina pectoris in syndrome X. JACC 17:499–506, 1991.

    Article  CAS  PubMed  Google Scholar 

  23. Mohlenkamp, S., L. O. Lerman, Z. Bajzer, P. E. Lund, and E. L. Ritman. Quantification of myocardial microcirculatory function with X-ray CT. Ann. N.Y. Acad. Sci. 972:307–316, 2002.

    Article  PubMed  Google Scholar 

  24. NCEP III Guidelines. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497. 2001.

    Google Scholar 

  25. Panza, J. A. Myocardial ischemia and the pains of the heart. N. Engl. J. Med. 346:1934–1935, 2002.

    Article  PubMed  Google Scholar 

  26. Panza, J. A. Coronary atherosclerosis: extending to the microcirculation? Eur. Heart J. 31:905–907, 2010.

    Article  PubMed  Google Scholar 

  27. Primak, A. N., Y. Dong, O. P. Dzyubak, S. M. Jorgensen, C. H. McCollough, and E. L. Ritman. A technical solution to avoid partial scan artifacts in cardiac MDCT. Med. Phys. 34:4726–4737, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Ramirez-Giraldo, J. C., L. Yu, B. Kantor, E. L. Ritman, and C. H. McCollough. Strategy to decrease partial scan reconstruction artifacts in myocardial perfusion CT: phantom and in vivo evalution. Med. Phys. 39:214–223, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ritman, E. L. Myocardial capillary permeability to iohexol: evaluation with fast X-ray computed tomography. Invest. Radiol. 29:612–617, 1994.

    Article  CAS  PubMed  Google Scholar 

  30. Rubinshtein, R., E. H. Yang, C. S. Rihal, A. Prasad, R. J. Lennon, P. J. Best, L. O. Lerman, and A. Lerman. Coronary microcirculatory vasodilator function in relation ot risk factors among patients without obstructive coronary disease and low to intermediate Framingham score. Eur. Heart J. 31:936–942, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Rumberger, J. A., M. R. Bell, A. J. Feiring, T. Behrenbeck, M. L. Marcus, and E. L. Ritman. Measurement of myocardial perfusion using fast computed tomography. In: Cardiac Imaging: A Companion to Braunwald’s Heart Disease, edited by M. L. Marcus, H. R. Schelbert, D. J. Skorton, and G. L. Wolf. Philadelphia: WB Saunders Company, 1991, pp. 688–702.

    Google Scholar 

  32. Sabiston, D. C., and D. E. Gregg. Effect of cardiac contraction on coronary blood flow. Circulation 15:14–20, 1957.

    Article  PubMed  Google Scholar 

  33. Stanely, H. E., and N. Ostrowsky. Growth and Form; Fractal and Non Fractal Pattertns in Physics. Boston, MA: Martinus Nijhoff, 1986.

    Google Scholar 

  34. Thompson, Jr, H. K. C. F. Starmer, R. E. Whalen, and H. D. Mcintosh. Indicator transit time considered as a gamma variate. Circ. Res. 14:502–515, 1964.

    Article  PubMed  Google Scholar 

  35. van den Heuvel, M., O. Sorop, S.-J. Koopmans, R. Dekker, R. de Vries, H. M. M. van Beusekom, E. C. Eringa, D. J. Duncker, A. H. J. Danser, and W. J. van der Giessen. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am. J. Physiol. Heart Circ. Physiol. 302:H85–H94, 2012.

    Article  PubMed  Google Scholar 

  36. Weiss, H. R., and R. S. Conway. Morphometric study of the total and perfused arteriolar and capillary network of the rabbit left ventricle. Cardiovasc. Res. 19:343–354, 1985.

    Article  CAS  PubMed  Google Scholar 

  37. Yipintsoi, T., W. A. Dobbs, Jr, P. D. Scanlon, T. J. Knopp, and J. B. Bassingthwaighte. Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ. Res. 33:573–587, 1973.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following personnel. Dr. Jodie Christner and Ms. Maria Shiung; Study Coordinator, Jennifer Alkhamis; CT Techs—Lisa L. Jorgenson, Emily Sheedy, Katherine Steele, Cynthia Walfoort, Nikkole Weber; CT Nurses—Laurie Claeys, Susan Persons, Susan Inman Radenz and William Stromme; and the Division of Engineering, Aaron Treat, Ms. Renae M. Forsman, Bruce W. Gustine and Ms. Diane R. Eaker and Delories C. Darling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik L. Ritman.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrenbeck, T.R., McCollough, C.H., Miller, W.L. et al. Early Changes in Myocardial Microcirculation in Asymptomatic Hypercholesterolemic Subjects: As Detected by Perfusion CT. Ann Biomed Eng 42, 515–525 (2014). https://doi.org/10.1007/s10439-013-0934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0934-z

Keywords

Navigation