Skip to main content

Advertisement

Log in

In Vitro Biomechanical Evaluation of Single Impulse and Repetitive Mechanical Shockwave Devices Utilized for Spinal Manipulative Therapy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical shockwave therapy devices have been in clinical use for almost 40 years. While most often used to treat back pain, our understanding of their biomechanical performance is very limited. From biomechanical studies we know that biological tissue is viscoelastic and preferably excited around its resonance frequency. Targeting these frequencies has been the focus in extracorporeal shock wave lithotripsy, but these concepts are relatively new in orthopedic and rehabilitation therapies. The exact mechanism by which shockwave therapy acts is not known. Knowledge of the performance characteristics of these devices, correlated with clinical outcome studies, may lead to better patient selection, improvement of device functionality, and knowledge of the underlying working principals of therapy. The objectives of this study were to determine the ability of several commercial shockwave devices to achieve a desired thrust profile in a benchtop setting, determine the thrust profile in a clinical analog, and determine the influence of operator experience level on device performance. We conducted two different types of testing: (1) bench testing to evaluate the devices themselves, and (2) clinical equivalent testing to determine the influence of the operator. The results indicated a significant dependence of thrust output on the compliance of the test media. The Activator V-E device matched the ideal half-sine thrust profile to 94%, followed by the Impulse device (84%), the Activator IV/FS (74%), and the Activator II (48%). While most devices deviated from the ideal profile on the return path, the Impulse device exhibited a secondary peak. Moreover, the Activator V-E device provided evidence that the device performs consistently despite operator experience level. This has been a major concern in manual spinal manipulation. Based on our results, a hyper-flexible spine would receive a lower peak thrust force than a hypo-flexible spine at the same power setting. Furthermore, a hand-held operation further reduced the peak thrust force as it increased the system compliance. However, that influence was dissimilar for the different devices. Although controlled clinical trials are needed to determine the correlation between thrust profile and clinical outcome, already ongoing clinical studies indicate an improved patient satisfaction due to reduced treatment pain when devices are used with a thrust characteristic closer to an ideal sine wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Activator Methods International, Ltd., Phoenix, AZ, 2013.

  2. Anderson, R., et al. A meta-analysis of clinical trials of spinal manipulation. J. Manipulative Physiol. Ther. 15(3):181–194, 1992.

    CAS  PubMed  Google Scholar 

  3. Chow, D. H., et al. Extracorporeal shockwave therapy for treatment of delayed tendon-bone insertion healing in a rabbit model: a dose-response study. Am. J. Sports Med. 40(12):2862–2871, 2012.

    Article  PubMed  Google Scholar 

  4. Colloca, C. J., and T. S. Keller. Electromyographic reflex responses to mechanical force, manually assisted spinal manipulative therapy. Spine (Phila Pa 1976) 26(10):1117–1124, 2001.

    Article  CAS  Google Scholar 

  5. Colloca, C. J., and T. S. Keller. Stiffness and neuromuscular reflex response of the human spine to posteroanterior manipulative thrusts in patients with low back pain. J. Manipulative Physiol. Ther. 24(8):489–500, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Colloca, C. J., T. S. Keller, and R. Gunzburg. Neuromechanical characterization of in vivo lumbar spinal manipulation. Part II. Neurophysiological response. J. Manipulative Physiol. Ther. 26(9):579–591, 2003.

    Article  PubMed  Google Scholar 

  7. Colloca, C. J., et al. Comparison of mechanical force of manually assisted chiropractic adjusting instruments. J. Manipulative Physiol. Ther. 28(6):414–422, 2005.

    Article  PubMed  Google Scholar 

  8. Colloca, C. J., et al. Intervertebral disc degeneration reduces vertebral motion responses. Spine (Phila Pa 1976) 32(19):E544–E550, 2007.

    Article  Google Scholar 

  9. Corbett, T. J., et al. Engineering silicone rubbers for in vitro studies: creating AAA models and ILT analogues with physiological properties. J. Biomech. Eng. 132(1):011008, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Coronado, R. A., et al. Changes in pain sensitivity following spinal manipulation: a systematic review and meta-analysis. J. Electromyogr. Kinesiol. 22(5):752–767, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Delius, M., et al. Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound Med. Biol. 21(9):1219–1225, 1995.

    Article  CAS  PubMed  Google Scholar 

  12. Fuhr, A. W., and D. B. Smith. Accuracy of piezoelectric accelerometers measuring displacement of a spinal adjusting instrument. J. Manipulative Physiol. Ther. 9(1):15–21, 1986.

    CAS  PubMed  Google Scholar 

  13. Gruenwald, I., et al. Shockwave treatment of erectile dysfunction. Ther. Adv. Urol. 5(2):95–99, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gudavalli, M. R., et al. Effect of sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture high-velocity, low-amplitude lumbar spine manipulation. J. Manipulative Physiol. Ther. 36(5):261–266, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Guzik, D. C., et al. A biomechanical model of the lumbar spine during upright isometric flexion, extension, and lateral bending. Spine (Phila Pa 1976) 21(4):427–433, 1996.

    Article  CAS  Google Scholar 

  16. Haas, M., et al. Muscle testing response to provocative vertebral challenge and spinal manipulation: a randomized controlled trial of construct validity. J. Manipulative Physiol. Ther. 17(3):141–148, 1994.

    CAS  PubMed  Google Scholar 

  17. Hatiboglu, G., et al. Prognostic variables for shockwave lithotripsy (SWL) treatment success: no impact of body mass index (BMI) using a third generation lithotripter. BJU Int. 108(7):1192–1197, 2011.

    Article  PubMed  Google Scholar 

  18. Hsu, R. W., et al. Enhancing mechanical strength during early fracture healing via shockwave treatment: an animal study. Clin. Biomech. (Bristol, Avon) 18(6):33–39, 2003.

    Article  Google Scholar 

  19. Huang, C., et al. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol. Med. 19(10):586–593, 2013.

    Article  Google Scholar 

  20. Keller, T. S., and C. J. Colloca. Mechanical force spinal manipulation increases trunk muscle strength assessed by electromyography: a comparative clinical trial. J. Manipulative Physiol. Ther. 23(9):585–595, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Keller, T. S., and C. J. Colloca. A rigid body model of the dynamic posteroanterior motion response of the human lumbar spine. J. Manipulative Physiol. Ther. 25(8):485–496, 2002.

    Article  PubMed  Google Scholar 

  22. Keller, T. S., C. J. Colloca, and A. W. Fuhr. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool. J. Manipulative Physiol. Ther. 22(2):75–86, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Keller, T. S., C. J. Colloca, and A. W. Fuhr. In vivo transient vibration assessment of the normal human thoracolumbar spine. J. Manipulative Physiol. Ther. 23(8):521–530, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Keller, T. S., et al. Three-dimensional vertebral motions produced by mechanical force spinal manipulation. J. Manipulative Physiol. Ther. 29(6):425–436, 2006.

    Article  PubMed  Google Scholar 

  25. Konczak, C. R. Ulnar nerve neuropraxia after extracorporeal shock wave lithotripsy: a case report. J. Can. Chiropr. Assoc. 49(1):40–45, 2005.

    PubMed Central  PubMed  Google Scholar 

  26. Lawrence, D. J., and W. C. Meeker. Chiropractic and CAM utilization: a descriptive review. Chiropr. Osteopat. 15:2, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lee, S. W., et al. Development and validation of a new technique for assessing lumbar spine motion. Spine (Phila Pa 1976) 27(8):E215–E220, 2002.

    Article  Google Scholar 

  28. Linderoth, B., and R. D. Foreman. Physiology of spinal cord stimulation: review and update. Neuromodulation 2(3):150–164, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Meeker, W. C., and S. Haldeman. Chiropractic: a profession at the crossroads of mainstream and alternative medicine. Ann. Intern. Med. 136(3):216–227, 2002.

    Article  PubMed  Google Scholar 

  30. Meyerson, B. A., and B. Linderoth. Mechanisms of spinal cord stimulation in neuropathic pain. Neurol. Res. 22(3):285–292, 2000.

    CAS  PubMed  Google Scholar 

  31. Nathan, M., and T. S. Keller. Measurement and analysis of the in vivo posteroanterior impulse response of the human thoracolumbar spine: a feasibility study. J. Manipulative Physiol. Ther. 17(7):431–441, 1994.

    CAS  PubMed  Google Scholar 

  32. Neuromechanical Innovations, L. http://www.neuromechanical.com/, 2013.

  33. Notarnicola, A., and B. Moretti. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue. Muscles Ligaments Tendons J. 2(1):33–37, 2012.

    PubMed Central  PubMed  Google Scholar 

  34. Pickar, J. G., and Y. M. Kang. Paraspinal muscle spindle responses to the duration of a spinal manipulation under force control. J. Manipulative Physiol. Ther. 29(1):22–31, 2006.

    Article  PubMed  Google Scholar 

  35. Rodola, F., et al. Anaesthesia for shock wave therapy in musculoskeletal disorders: a preliminary report. Eur. Rev. Med. Pharmacol. Sci. 6(6):133–138, 2002.

    CAS  PubMed  Google Scholar 

  36. Song, X. J., et al. Spinal manipulation reduces pain and hyperalgesia after lumbar intervertebral foramen inflammation in the rat. J. Manipulative Physiol. Ther. 29(1):5–13, 2006.

    Article  PubMed  Google Scholar 

  37. Stojanovic, M. P. Stimulation methods for neuropathic pain control. Curr. Pain Headache Rep. 5(2):130–137, 2001.

    Article  CAS  PubMed  Google Scholar 

  38. Torrance, D. A., and C. Degraauw. Treatment of post-traumatic myositis ossificans of the anterior thigh with extracorporeal shock wave therapy. J. Can. Chiropr. Assoc. 55(4):240–246, 2011.

    PubMed Central  PubMed  Google Scholar 

  39. Waxman, S. G., et al. Voltage-gated sodium channels and the molecular pathogenesis of pain: a review. J. Rehabil. Res. Dev. 37(5):517–528, 2000.

    CAS  PubMed  Google Scholar 

  40. Wong, K. W., et al. The flexion-extension profile of lumbar spine in 100 healthy volunteers. Spine (Phila Pa 1976) 29(15):1636–1641, 2004.

    Article  Google Scholar 

  41. Yan, X., et al. Improvement of blood flow, expression of nitric oxide, and vascular endothelial growth factor by low-energy shockwave therapy in random-pattern skin flap model. Ann. Plast. Surg. 61(6):646–653, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Yoo, S. D., et al. Effects of extracorporeal shockwave therapy on nanostructural and biomechanical responses in the collagenase-induced Achilles tendinitis animal model. Lasers Med. Sci. 27(6):1195–1204, 2012.

    Article  PubMed  Google Scholar 

  43. Zhong, P., and G. M. Preminger. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J. Endourol. 8(4):263–268, 1994.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Activator Methods International LLC for providing us with the test instruments.

Conflict of interest

The authors have no financial conflict related to any aspect of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. K. Liebschner.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebschner, M.A.K., Chun, K., Kim, N. et al. In Vitro Biomechanical Evaluation of Single Impulse and Repetitive Mechanical Shockwave Devices Utilized for Spinal Manipulative Therapy. Ann Biomed Eng 42, 2524–2536 (2014). https://doi.org/10.1007/s10439-014-1115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1115-4

Keywords

Navigation