Skip to main content
Log in

Effects of Perturbation-Based Slip Training Using a Virtual Reality Environment on Slip-induced Falls

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of the current study was to design and evaluate the effectiveness of virtual reality training in improving recovery reactions and reducing fall frequency in older adults. Twenty-four older adults were recruited and randomly assigned to two groups (virtual reality training and control). Both groups underwent three sessions including baseline slip, training and transfer of training on slippery surface. Both groups experienced two slips, one during baseline and the other during the transfer of training trial. The training group underwent 12 simulated slips using a visual perturbation induced by tilting a virtual reality scene while walking on the treadmill and the control group performed normal walking during the training session. Kinematic and kinetic data were collected during all the sessions. Results demonstrated a reduced incidence of falls in the training group during the transfer of training trial as compared to the control group. The training group was able to transfer reactive control strategies learned during training to the second slip trial. The reactive adjustments included reduced slip distance. Additionally, gait parameters reflective of gait instability (stride length, step width, variability in stride velocity) reduced after walking in the VR environment for 15–20 min. The results indicated a beneficial effect of the virtual reality training in reducing slip severity and recovery kinematics in healthy older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bhatt, T., E. Wang, and Y. C. Pai. Retention of adaptive control over varying intervals: prevention of slip- induced backward balance loss during gait. J. Neurophysiol. 95(5):2913–2922, 2006. doi:10.1152/jn.01211.2005.

    Article  CAS  PubMed  Google Scholar 

  2. Brady, R. A., M. J. Pavol, T. M. Owings, and M. D. Grabiner. Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking. J. Biomech. 33(7):803–808, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Bugnariu, N., and J. Fung. Aging and selective sensorimotor strategies in the regulation of upright balance. J. Neuroeng. Rehabil. 4:19, 2007. doi:10.1186/1743-0003-4-19.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Haibach, P. S., S. M. Slobounov, and K. M. Newell. The potential applications of a virtual moving environment for assessing falls in elderly adults. Gait Posture 27(2):303–308, 2008. doi:10.1016/j.gaitpost.2007.04.004.

    Article  PubMed  Google Scholar 

  5. Hollman, J. H., R. H. Brey, R. A. Robb, T. J. Bang, and K. R. Kaufman. Spatiotemporal gait deviations in a virtual reality environment. Gait Posture 23(4):441–444, 2006. doi:10.1016/j.gaitpost.2005.05.005.

    Article  PubMed  Google Scholar 

  6. Jeka, J., K. S. Oie, and T. Kiemel. Multisensory information for human postural control: integrating touch and vision. Exp. Brain Res. 134(1):107–125, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Kannus, P., H. Sievanen, M. Palvanen, T. Jarvinen, and J. Parkkari. Prevention of falls and consequent injuries in elderly people. Lancet 366(9500):1885–1893, 2005. doi:10.1016/S0140-6736(05)67604-0.

    Article  PubMed  Google Scholar 

  8. Kennedy, R. S., N. E. Lane, K. S. Berbaum, and M. G. Lilienthal. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3):203–220, 1993.

    Article  Google Scholar 

  9. Keshner, E. A., and R. V. Kenyon. Using immersive technology for postural research and rehabilitation. Assist. Technol. 16(1):54–62, 2004. doi:10.1080/10400435.2004.10132074.

    Article  PubMed  Google Scholar 

  10. Kottke, F. J., D. Halpern, J. K. Easton, A. T. Ozel, and C. A. Burrill. The training of coordination. Arch. Phys. Med. Rehabil. 59(12):567–572, 1978.

    CAS  PubMed  Google Scholar 

  11. Liu, J., and T. E. Lockhart. Age-related joint moment characteristics during normal gait and successful reactive-recovery from unexpected slip perturbations. Gait Posture 30(3):276–281, 2009. doi:10.1016/j.gaitpost.2009.04.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lockhart, T. E., J. L. Smith, and J. C. Woldstad. Effects of aging on the biomechanics of slips and falls. Hum. Factors 47(4):708–729, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Lockhart, T. E., J. C. Woldstad, and J. L. Smith. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 46(12):1136–1160, 2003. doi:10.1080/0014013031000139491.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Mansfield, A., A. L. Peters, B. A. Liu, and B. E. Maki. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial. BMC Geriatr. 7:12, 2007. doi:10.1186/1471-2318-7-12.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Menz, H. B., S. R. Lord, and R. C. Fitzpatrick. Age-related differences in walking stability. Age Ageing 32(2):137–142, 2003.

    Article  PubMed  Google Scholar 

  16. Nyberg, L., L. Lundin-Olsson, B. Sondell, A. Backman, K. Holmlund, S. Eriksson, and G. Bucht. Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study. Cyberpsychol. Behav. 9(4):388–395, 2006. doi:10.1089/cpb.2006.9.388.

    Article  PubMed  Google Scholar 

  17. Owings, T. M., and M. D. Grabiner. Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J. Biomech. 37(6):935–938, 2004. doi:10.1016/j.jbiomech.2003.11.012.

    Article  PubMed  Google Scholar 

  18. Pai, Y. C., J. D. Wening, E. F. Runtz, K. Iqbal, and M. J. Pavol. Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults. J. Neurophysiol. 90(2):755–762, 2003. doi:10.1152/jn.01118.2002.

    Article  PubMed  Google Scholar 

  19. Perkins, P. J. Measurement of slip between the shoe and ground during walking. Am. Soc. Test. Mater. 649:71–87, 1978.

    Google Scholar 

  20. Sterling, D. A., J. A. O’Connor, and J. Bonadies. Geriatric falls: injury severity is high and disproportionate to mechanism. J. Trauma 50(1):116–119, 2001.

    Article  CAS  PubMed  Google Scholar 

  21. Sveistrup, H. Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 1(1):10, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the NSF (Grant #CBET-0756058) and NIOSH (Grant #CDC/NIOSH-R01-OH009222). Additionally, supported by L30 AG022963-04/NIH HHS/United States.

Conflict of interest

The authors have no conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parijat, P., Lockhart, T.E. & Liu, J. Effects of Perturbation-Based Slip Training Using a Virtual Reality Environment on Slip-induced Falls. Ann Biomed Eng 43, 958–967 (2015). https://doi.org/10.1007/s10439-014-1128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1128-z

Keywords

Navigation