Skip to main content
Log in

Pressure Induced Deep Tissue Injury Explained

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The paper describes the current views on the cause of a sub-class of pressure ulcers known as pressure induced deep tissue injury (DTI). A multi-scale approach was adopted using model systems ranging from single cells in culture, tissue engineered muscle to animal studies with small animals. This has led to a clear understanding on two damage mechanisms associated with the development of DTI. Direct deformation results from high, but physiologically relevant, strains and is a process that leads to the first signs of cell damage within minutes. Ischaemic damage is caused by occlusion of blood vessels, but takes several hours to develop. The paper ends with some clinical consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bader, D. L. The recovery characteristics of soft tissue following repeated loading. J. Rehab. Res. Dev. 27:141–150, 1990.

    Article  CAS  Google Scholar 

  2. Bosboom, E. M. H., C. V. C. Bouten, C. W. J. Oomens, F. P. T. Baaijens, and K. Nicolay. Quantifying pressure sore related muscle damage using high-resolution MRI. J. Appl. Physiol. 95:2235–2240, 2003.

    CAS  PubMed  Google Scholar 

  3. Bosboom, E. M. H., C. V. C. Bouten, C. W. J. Oomens, H. W. M. van Straaten, F. P. T. Baaijens, and V. S. Maderich. Quantification and localisation of damage in rat muscles after controlled loading; a new approach to study the aetiology of pressure sores. Med. Eng. Phys. 23:195–200, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Bosboom, E. M. H., M. K. C. Hesselink, C. W. J. Oomens, C. V. C. Bouten, M. R. Drost, and F. P. T. Baaijens. Passive transverse mechanical properties of skeletal muscle under in vivo compression. J. Biomech. 34(10):1365–1368, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Bouten, C. V. C., M. M. Knight, D. A. Lee, and D. L. Bader. Compressive deformation and damage of muscle cell subpopulations in a model system. Ann. Biomed. Eng. 29:153–163, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Bouten, C. V. C., C. W. J. Oomens, F. P. T. Baaijens, and D. L. Bader. The aetiology of pressure sores: skin deep or muscle bound? Arch. Phys. Med. Rehab. 84(4):616–619, 2003.

    Article  Google Scholar 

  7. Breuls, R. G. M., C. V. C. Bouten, C. W. J. Oomens, D. L. Bader, and F. P. T. Baaijens. Compression induced cell damage in engineered muscle tissue: an in vitro model to study pressure ulcer aetiology. Ann. Biomed. Eng. 31(11):1357–1365, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Ceelen, K. K., A. Stekelenburg, S. Loerakker, G. J. Strijkers, D. L. Bader, K. Nicolay, F. P. T. Baaijens, and C. W. J. Oomens. Compresion-induced damage and internal tissue strains are related. J. Biomech. 41(16):3399–3404, 2008.

    Article  CAS  PubMed  Google Scholar 

  9. Ceelen, K. K., A. Stekelenburg, J. L. J. Mulders, F. P. T. Baaijens, and C. W. J. Oomens. Validation of a dedicated finite element model of skeletal muscle compression with MR tagging measurements. J. Biomech. Eng. 130(6):061015, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Daniel, R. K., D. L. Priest, and D. C. Wheatley. Etiological factors in pressure sores: an experimental model. Arch. Phys. Med. Rehab. 62:492–498, 1982.

    Google Scholar 

  11. Gawlitta, D., K. J. M. Boonen, C. W. J. Oomens, F. P. T. Baaijens, and C. V. C. Bouten. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model. Tissue Eng. Part A 14(1):161–171, 2008.

    Article  CAS  PubMed  Google Scholar 

  12. Gawlitta, D., W. Li, C. W. J. Oomens, F. P. T. Baaijens, D. L. Bader, and C. V. C. Bouten. The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study. Ann. Biomed. Eng. 35(2):273–284, 2007.

    Article  PubMed  Google Scholar 

  13. Gawlitta, D., C. W. J. Oomens, F. P. T. Baaijens, and C. V. C. Bouten. Evaluation of a continuous quantification method of apoptosis and necrosis in tissue cultures. Cytotechnology 46:139–150, 2005.

    Article  PubMed Central  Google Scholar 

  14. Gawlitta, D., C. W. J. Oomens, D. L. Bader, F. P. T. Baaijens, and C. V. C. Bouten. Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle. J. Appl. Physiol. 103(2):464–473, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Gefen, A., B. V. Nierop, D. L. Bader, and C. W. J. Oomens. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury. J. Biomech. 41:2003–2012, 2008.

    Article  PubMed  Google Scholar 

  16. Hermann, E. C., C. F. Knapp, J. C. Donofrio, and R. Salcido. Skin perfusion responses to surface pressure-induced ischemia: implication for the developing pressure ulcer. J. Rehab. Res. Dev. 36:109–120, 1999.

    Google Scholar 

  17. Linder-Ganz, E., S. Engelberg, M. Scheinowitz, and A. Gefen. Pressure-time cell death threshold for albino rat skeletal muscles. J. Biomech. 39:2725–2732, 2006.

    Article  PubMed  Google Scholar 

  18. Linder-Ganz, E., N. Shabshinb, Y. Itzchakb, and A. Gefen. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. J. Biomech. 40:1443–1454, 2007.

    Article  PubMed  Google Scholar 

  19. Loerakker, S., D. L. Bader, F. P. T. Baaijens, and C. W. J. Oomens. Which factors influence the ability of a computational model to predict the in vivo deformation behaviour of skeletal muscle. Comp. Meth. Biom. Biomed. Engng. 16(3):338–345, 2013.

    Article  CAS  Google Scholar 

  20. Loerakker, S., E. Manders, G. J. Strijkers, K. Nicolay, F. P. T. Baaijens, D. L. Bader, and C. W. J. Oomens. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading. J. Appl. Physiol. 111(4):1168–1177, 2011.

    Article  CAS  PubMed  Google Scholar 

  21. Mimura, M., T. Ohura, M. Takahashi, R. Kajiwara, and N. Ohura. Mechanism leading to the development of pressure ulcers based on shear force and pressures during a bed operation. Wound Repair and Regen. 17(6):789–796, 2009.

    Article  Google Scholar 

  22. National Pressure Ulcer Advisory Panel and European Pressure Ulcer Advisory Panel. Prevention and treatment of pressure ulcers: clinical practice guideline. Washington DC: National Pressure Ulcer Advisroy Panel, 2009.

    Google Scholar 

  23. Oomens, C. W. J., W. Zenhorst, M. Broek, B. Hemmes, M. Poeze, P. R. G. Brink, and D. L. Bader. A numerical study to analyse the risk for pressure ulcer development on a spine board. Clin. Biomech. 28:736–742, 2013.

    Article  CAS  Google Scholar 

  24. Peirce, S. M., T. C. Skalak, and G. T. Rodeheaver. Ischemia-reperfusion injury in chronic pressure ulcer formation: a skin model in the rat. Wound Repair Regen. 8:68–76, 2000.

    Article  CAS  PubMed  Google Scholar 

  25. Reddy, N. P., H. Patel, and T. A. Krouskop. Interstitial fluid flow as a factor in decubitus ulcer formation. J. Biomech. 14:879–881, 1981.

    Article  CAS  PubMed  Google Scholar 

  26. Reswick, J. B., and J. E. Rogers. Experience at Rancho Los Amigos Hospital with devices and techniques to prevent pressure sores. Bedsore Biomech. 1976:301–310, 1976.

    Google Scholar 

  27. Stekelenburg, A., D. Gawlitta, D. L. Bader, and C. W. J. Oomens. Deep tissue injury: how deep is our understanding? Arch. Phys. Med. Rehab. 89:1410–1413, 2008.

    Article  Google Scholar 

  28. Stekelenburg, A., C. W. J. Oomens, G. J. Strijkers, L. A. H. J. de Graaf, D. L. Bader, and K. Nicolay. A new MR-compatible loading device to study in vivo muscle damage development in rats due to compressive loading. Med. Eng. Phys. 28:331–338, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Vandenburgh, H. H., P. Karlisch, and Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. Vitro Cell. Dev. Biol. 24(3):166–174, 1988.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cees W. J. Oomens.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oomens, C.W.J., Bader, D.L., Loerakker, S. et al. Pressure Induced Deep Tissue Injury Explained. Ann Biomed Eng 43, 297–305 (2015). https://doi.org/10.1007/s10439-014-1202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1202-6

Keywords

Navigation