Skip to main content

Advertisement

Log in

Vascularization in Bone Tissue Engineering Constructs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vascularization of large bone grafts is one of the main challenges of bone tissue engineering (BTE), and has held back the clinical translation of engineered bone constructs for two decades so far. The ultimate goal of vascularized BTE constructs is to provide a bone environment rich in functional vascular networks to achieve efficient osseointegration and accelerate restoration of function after implantation. To attain both structural and vascular integration of the grafts, a large number of biomaterials, cells, and biological cues have been evaluated. This review will present biological considerations for bone function restoration, contemporary approaches for clinical salvage of large bone defects and their limitations, state-of-the-art research on the development of vascularized bone constructs, and perspectives on evaluating and implementing novel BTE grafts in clinical practice. Success will depend on achieving full graft integration at multiple hierarchical levels, both between the individual graft components as well as between the implanted constructs and their surrounding host tissues. The paradigm of vascularized tissue constructs could not only revolutionize the progress of BTE, but could also be readily applied to other fields in regenerative medicine for the development of new innovative vascularized tissue designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aguirre, A., J. A. Planell, and E. Engel. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem. Biophys. Res. Commun. 400:284–291, 2010.

    CAS  PubMed  Google Scholar 

  2. Akita, S., N. Tamai, A. Myoui, M. Nishikawa, T. Kaito, K. Takaoka, and H. Yoshikawa. Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng. 10:789–795, 2004.

    CAS  PubMed  Google Scholar 

  3. Albrektsson, T., and C. Johansson. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10:S96–S101, 2001.

    PubMed Central  PubMed  Google Scholar 

  4. American Society for Testing and Materials. ASTM F756-00: Standard Practice for Assessment of Hemolytic Properties of Materials. Philadelphia, PA: ASTM International, 2000.

    Google Scholar 

  5. An, Y. H. Mechanical properties of bone. In: Mechanical Testing of Bone and the Bone-Implant Interface, edited by Y. H. An, and R. A. Draughn. Boca Raton, FL: CRC Press, 2000, pp. 41–63.

    Google Scholar 

  6. Annabi, N., S. M. Mithieux, A. S. Weiss, and F. Dehghani. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials 31:1655–1665, 2010.

    CAS  PubMed  Google Scholar 

  7. Baranski, J. D., R. R. Chaturvedi, K. R. Stevens, J. Eyckmans, B. Carvalho, R. D. Solorzano, M. T. Yang, J. S. Miller, S. N. Bhatia, and C. S. Chen. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl. Acad. Sci. USA 110:7586–7591, 2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Bauer, T., and G. Muschler. Bone graft materials. An overview of the basic science. Clin. Orthop. Relat. Res. 371:10–27, 2000.

    PubMed  Google Scholar 

  9. Bergers, G., and S. Song. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 7:452–464, 2005.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Berner, A., J. Boerckel, S. Saifzadeh, R. Steck, J. Ren, C. Vaquette, J. Q. Zhang, M. Nerlich, R. E. Guldberg, and D. Hutmacher. Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res. 347:603–612, 2012.

    CAS  PubMed  Google Scholar 

  11. Betz, R. Limitations of autograft and allograft: new synthetic solutions. Orthopedics 25:s561–s570, 2002.

    PubMed  Google Scholar 

  12. Bi, Y., C. H. Stuelten, T. Kilts, S. Wadhwa, R. V. Iozzo, P. G. Robey, X.-D. Chen, and M. F. Young. Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J. Biol. Chem. 280:30481–30489, 2005.

    CAS  PubMed  Google Scholar 

  13. Black, L., P. Purnell, and J. Hill. Current themes in cement research. Adv. Appl. Ceram. 109:253–259, 2010.

    CAS  Google Scholar 

  14. Blum, A. L. L., J. C. Bongiovanni, S. J. Morgan, M. A. Flierl, and F. B. dos Reis. Complications associated with distraction osteogenesis for infected nonunion of the femoral shaft in the presence of a bone defect: a retrospective series. J. Bone Joint Surg. Br. 92-B:565–570, 2010.

    Google Scholar 

  15. Bonzani, I. C., R. Adhikari, S. Houshyar, R. Mayadunne, P. Gunatillake, and M. M. Stevens. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28:423–433, 2007.

    CAS  PubMed  Google Scholar 

  16. Buckwalter, J., M. Glimcher, R. Cooper, and R. Recker. Bone biology. J. Bone Joint Surg. Am. 77:1256–1275, 1995.

    Google Scholar 

  17. Chim, H., C. J. Salgado, S. Mardini, and H.-C. Chen. Reconstruction of mandibular defects. Semin. Plast. Surg. 24:188–197, 2010.

    PubMed Central  PubMed  Google Scholar 

  18. Dabrowski, B., W. Swieszkowski, D. Godlinski, and K. J. Kurzydlowski. Highly porous titanium scaffolds for orthopaedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 95B:53–61, 2010.

    CAS  Google Scholar 

  19. Davis, G. E., and D. R. Senger. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97:1093–1107, 2005.

    CAS  PubMed  Google Scholar 

  20. Deb, S., R. Mandegaran, and L. Di Silvio. A porous scaffold for bone tissue engineering/45S5 Bioglass® derived porous scaffolds for co-culturing osteoblasts and endothelial cells. J. Mater. Sci. Mater. Med. 21:893–905, 2010.

    CAS  PubMed  Google Scholar 

  21. Dehghani, F., and N. Annabi. Engineering porous scaffolds using gas-based techniques. Curr. Opin. Biotechnol. 22:661–666, 2011.

    CAS  PubMed  Google Scholar 

  22. Drury, J. L., and D. J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351, 2003.

    CAS  PubMed  Google Scholar 

  23. Farshid, B., G. Lalwani, and B. Sitharaman. Cytotoxicity of polypropylene fumarate nanocomposites used in bone tissue engineering. In: 39th Annual Northeast Bioengineering Conference (NEBEC). Syracuse, NY, 2013, pp. 119–120.

  24. Ferreira, C. L., F. A. M. D. Abreu, G. A. B. Silva, F. F. Silveira, L. B. A. Barreto, T. D. P. Paulino, M. N. Miziara, and J. B. Alves. TGF-β1 and BMP-4 carried by liposomes enhance the healing process in alveolar bone. Arch. Oral Biol. 58:646–656, 2013.

    CAS  PubMed  Google Scholar 

  25. Folkman, J., and M. Hochberg. Self-regulation of growth in three dimensions. J. Exp. Med. 138:745–753, 1973.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Glowacki, J., and S. Mizuno. Collagen scaffolds for tissue engineering. Biopolymers 89:338–344, 2008.

    CAS  PubMed  Google Scholar 

  27. Grayson, W. L., M. Fröhlich, K. Yeager, S. Bhumiratana, M. E. Chan, C. Cannizzaro, L. Q. Wan, X. S. Liu, X. E. Guo, and G. Vunjak-Novakovic. Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA 107:3299–3304, 2010.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Greenwald, S. E., and C. L. Berry. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J. Pathol. 190:292–299, 2000.

    CAS  PubMed  Google Scholar 

  29. Gurtner, G. C., K. A. Bhatt, and V. W. Wong. Composite tissue engineering and organ regeneration using explanted microvascular beds (EMBs). Plast. Reconstr. Surg. 124:106–107, 2009.

    Google Scholar 

  30. Habibovic, P., and K. de Groot. Osteoinductive biomaterials-properties and relevance in bone repair. J. Tissue Eng. Regen. Med. 1:25–32, 2007.

    CAS  PubMed  Google Scholar 

  31. Haholu, A., C. Sever, F. Uygur, G. Kose, M. Urhan, O. Sinan, O. Omer, S. Cihan, and Y. Kulahci. Prefabrication of vascularized bone graft using an interconnected porous calcium hydroxyapatite ceramic in presence of vascular endothelial growth factor and bone marrow mesenchymal stem cells: experimental study in rats. Indian J. Plast. Surg. 45:444–452, 2012.

    PubMed Central  PubMed  Google Scholar 

  32. Hastings, C. L., H. M. Kelly, M. J. Murphy, F. P. Barry, F. J. O’Brien, and G. P. Duffy. Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. J. Control. Release 161:73–80, 2012.

    CAS  PubMed  Google Scholar 

  33. Heslop, B. F., I. M. Zeiss, and N. W. Nisbet. Studies on transference of bone: I. A comparison of autologous and homologous bone implants with reference to osteocyte survival, osteogenesis and host reaction. Br. J. Exp. Pathol. 41:269–287, 1960.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Hess, J. R., R. L. Sparrow, P. F. Van Der Meer, J. P. Acker, R. A. Cardigan, and D. V. Devine. Blood components: red blood cell hemolysis during blood bank storage: using national quality management data to answer basic scientific questions. Transfusion 49:2599–2603, 2009.

    PubMed  Google Scholar 

  35. Ilizarov, G. A. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin. Orthop. Relat. Res. 239:263–285, 1989.

    PubMed  Google Scholar 

  36. Jain, R. K., P. Au, J. Tam, D. G. Duda, and D. Fukumura. Engineering vascularized tissue. Nat. Biotechnol. 23:821–823, 2005.

    CAS  PubMed  Google Scholar 

  37. Jin, G., and G. Kim. The effect of sinusoidal AC electric stimulation of 3D PCL/CNT and PCL/β-TCP based bio-composites on cellular activities for bone tissue regeneration. J. Mater. Chem. B 1:1439–1452, 2013.

    CAS  Google Scholar 

  38. Jung, S., and J. Kleinheinz. Angiogenesis — the key to regeneration. In: Regenerative Medicine and Tissue Engineering, edited by J. A. Andrades. Rijeka: InTech, 2013, pp. 453–473.

    Google Scholar 

  39. Kang, Y., E. Jabbari, and Y. Yang. Integrating top-down and bottom-up scaffolding tissue engineering approach for bone regeneration. In: Micro and Nanotechnologies in Engineering Stem Cells and Tissues, edited by M. Ramalingam, E. Jabbari, S. Ramakrishna, and A. Khademhosseini. Hoboken, NJ: Wiley, 2013, pp. 142–159.

    Google Scholar 

  40. Kang, Y., S. Kim, A. Khademhosseini, and Y. Yang. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Biomaterials 32:6119–6130, 2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Kang, S.-W., J.-S. Kim, K.-S. Park, B.-H. Cha, J.-H. Shim, J. Y. Kim, D.-W. Cho, J.-W. Rhie, and S.-H. Lee. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48:298–306, 2011.

    CAS  PubMed  Google Scholar 

  42. Kang, J. K., M. H. Lee, B. J. Kwon, H. H. Kim, I. K. Shim, M. R. Jung, S. J. Lee, and J.-C. Park. Effective layer by layer cell seeding into non-woven 3D electrospun scaffolds of poly-L-lactic acid microfibers for uniform tissue formation. Macromol. Res. 20:795–799, 2012.

    CAS  Google Scholar 

  43. Kang, Y., N. Mochizuki, A. Khademhosseini, J. Fukuda, and Y. Yang. Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach. Acta Biomater. 11:449–458, 2015.

    CAS  PubMed  Google Scholar 

  44. Kang, Y., L. Ren, and Y. Yang. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS Appl. Mater. Interfaces 6:9622–9633, 2014.

    CAS  PubMed  Google Scholar 

  45. Kang, Y., A. Scully, D. A. Young, S. Kim, H. Tsao, M. Sen, and Y. Yang. Enhanced mechanical performance and biological evaluation of a PLGA coated ε-TCP composite scaffold for load-bearing applications. Eur. Polym. J. 47:1569–1577, 2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Karger, C., T. Kishi, L. Schneider, F. Fitoussi, and A. C. Masquelet. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop. Traumatol. Surg. Res. 98:97–102, 2012.

    CAS  PubMed  Google Scholar 

  47. Kaully, T., K. Kaufman-Francis, A. Lesman, and S. Levenberg. Vascularization—the conduit to viable engineered tissues. Tissue Eng. Part B Rev. 15:159–169, 2009.

    CAS  PubMed  Google Scholar 

  48. Khira, Y. M., and H. A. Badawy. Pedicled vascularized fibular graft with Ilizarov external fixator for reconstructing a large bone defect of the tibia after tumor resection. J. Orthop. Traumatol. 14:91–100, 2013.

    PubMed Central  PubMed  Google Scholar 

  49. Kim, S., K. Bedigrew, T. Guda, W. J. Maloney, S. Park, J. C. Wenke, and Y. P. Yang. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomater. 10:5021–5033, 2014.

    CAS  PubMed  Google Scholar 

  50. Kim, S., Y. Kang, C. A. Krueger, M. Sen, J. B. Holcomb, D. Chen, J. C. Wenke, and Y. Yang. Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater. 8:1768–1777, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Kim, S., Y. Kang, Á. E. Mercado-Pagán, W. J. Maloney, and Y. Yang. In vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 102:1393–1406, 2014.

    PubMed  Google Scholar 

  52. Kim, S., and Hv. Recum. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. Tissue Eng. Part B Rev. 14:133–147, 2008.

    CAS  PubMed  Google Scholar 

  53. Kirkpatrick, J. S., C. N. Cornell, B. H. Hoang, W. Hsu, J. T. Watson, W. C. Watters, C. M. Turkelson, J. L. Wies, and S. Anderson. Bone void fillers. J. Am. Acad. Orthop. Surg. 18:576–579, 2010.

    PubMed  Google Scholar 

  54. Kneser, U., E. Polykandriotis, J. Ohnolz, K. Heidner, L. Grabinger, S. Euler, K. U. Amann, A. Hess, K. Brune, and P. Greil. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 12:1721–1731, 2006.

    CAS  PubMed  Google Scholar 

  55. Kneser, U., D. Schaefer, E. Polykandriotis, and R. Horch. Tissue engineering of bone: the reconstructive surgeon’s point of view. J. Cell Mol. Med. 10:7–19, 2006.

    CAS  PubMed  Google Scholar 

  56. Koffler, J., K. Kaufman-Francis, Y. Shandalov, D. Egozi, D. Amiad Pavlov, A. Landesberg, and S. Levenberg. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc. Natl. Acad. Sci. USA 108:14789–14794, 2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Kramschuster, A., and L.-S. Turng. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 92B:366–376, 2010.

    CAS  Google Scholar 

  58. Krishnan, L., N. Willett, and R. Guldberg. Vascularization strategies for bone regeneration. Ann. Biomed. Eng. 42:432–444, 2014.

    PubMed  Google Scholar 

  59. Langer, R. Tissue engineering: perspectives, challenges, and future directions. Tissue Eng. 13:1–2, 2007.

    PubMed  Google Scholar 

  60. Laschke, M. W., Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, N. Torio-Padron, R. Schramm, M. Rücker, and D. Junker. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 12:2093–2104, 2006.

    CAS  PubMed  Google Scholar 

  61. Laschke, M. W., H. Mussawy, S. Schuler, A. Kazakov, M. Rücker, D. Eglin, M. Alini, and M. D. Menger. Short-term cultivation of in situ prevascularized tissue constructs accelerates inosculation of their preformed microvascular networks after implantation into the host tissue. Tissue Eng. Part A 17:841–853, 2010.

    PubMed  Google Scholar 

  62. Lawson, J., S. Dahl, H. Prichard, R. Manson, S. Gage, A. Kypson, J. Blum, A. Pilgrim, W. Tente, and L. Niklason. VS5 human tissue-engineered grafts for hemodialysis: development, preclinical data, and early investigational human implant experience. J. Vasc. Surg. 59:32S–33S, 2014.

    Google Scholar 

  63. Lee, J.-H., J.-H. Kim, S.-H. Oh, S.-J. Kim, Y.-S. Hah, B.-W. Park, D. R. Kim, G.-J. Rho, G.-H. Maeng, R.-H. Jeon, H.-C. Lee, J.-R. Kim, G.-C. Kim, U.-K. Kim, and J.-H. Byun. Tissue-engineered bone formation using periosteal-derived cells and polydioxanone/pluronic F127 scaffold with pre-seeded adipose tissue-derived CD146 positive endothelial-like cells. Biomaterials 32:5033–5045, 2011.

    CAS  PubMed  Google Scholar 

  64. L’Heureux, N., S. Pâquet, R. Labbé, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56, 1998.

    PubMed  Google Scholar 

  65. Liao, J., L. Zhang, Y. Zuo, H. Wang, J. Li, Q. Zou, and Y. Li. Development of nanohydroxyapatite/polycarbonate composite for bone repair. J. Biomater. Appl. 24:31–45, 2009.

    CAS  Google Scholar 

  66. Liberti, L., A. Breckenridge, H. G. Eichler, R. Peterson, N. McAuslane, and S. Walker. Expediting patients’ access to medicines by improving the predictability of drug development and the regulatory approval process. Clin. Pharmacol. Ther. 87:27–31, 2009.

    Google Scholar 

  67. Liska, R., M. Schuster, R. Inführ, C. Turecek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl. Photopolymers for rapid prototyping. J. Coat. Techol. Res. 4:505–510, 2007.

    CAS  Google Scholar 

  68. Liu, G., W. Fan, X. Miao, Y. Xiao, D. Good, and M. Q. Wei. Sequential release of BMP-7 and VEGF from the PLGA/AK-gelatin composite scaffolds. J. Biomim. Biomater. Tissue Eng. 11:81–91, 2011.

    CAS  Google Scholar 

  69. Liu, Y., J. H. Kim, D. Young, S. K. Nishimoto, R. Heck, and Y. Yang. Biomimetic macroporous scaffolds with high mechanical strength and biological evaluation. In: 38th Annual Meeting of the American Association for Dental Research. Miami, FL, 2009, p. 120808.

  70. Liu, Y., S.-H. Teoh, M. S. K. Chong, C.-H. Yeow, R. D. Kamm, M. Choolani, and J. K. Y. Chan. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng. Part A 19:893–904, 2012.

    PubMed  Google Scholar 

  71. Macdonald, M. L., R. E. Samuel, N. J. Shah, R. F. Padera, Y. M. Beben, and P. T. Hammond. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32:1446–1453, 2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Marolt, D., I. M. Campos, S. Bhumiratana, A. Koren, P. Petridis, G. Zhang, P. F. Spitalnik, W. L. Grayson, and G. Vunjak-Novakovic. Engineering bone tissue from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 109:8705–8709, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Masquelet, A. C., and T. Begue. The concept of induced membrane for reconstruction of long bone defects. Orthop. Clin. N. Am. 41:27–37, 2010.

    Google Scholar 

  74. Masquelet, A., F. Fitoussi, T. Begue, and G. Muller. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann. Chir. Plast. Esthet. 45:346–353, 2000.

    CAS  PubMed  Google Scholar 

  75. Matsumoto, T., A. Kawamoto, R. Kuroda, M. Ishikawa, Y. Mifune, H. Iwasaki, M. Miwa, M. Horii, S. Hayashi, A. Oyamada, H. Nishimura, S. Murasawa, M. Doita, M. Kurosaka, and T. Asahara. Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am. J. Pathol. 169:1440–1457, 2006.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Mauffrey, C., M. Madsen, R. J. Bowles, and D. Seligson. Bone graft harvest site options in orthopaedic trauma: a prospective in vivo quantification study. Injury 43:323–326, 2012.

    PubMed  Google Scholar 

  77. McCarthy, I. The physiology of bone blood flow: a review. J. Bone Joint Surg. Am. 88:4–9, 2006.

    PubMed  Google Scholar 

  78. McFadden, T. M., G. P. Duffy, A. B. Allen, H. Y. Stevens, S. M. Schwarzmaier, N. Plesnila, J. M. Murphy, F. P. Barry, R. E. Guldberg, and F. J. O’Brien. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta Biomater. 9:9303–9316, 2013.

    CAS  PubMed  Google Scholar 

  79. Meng, Z. X., H. F. Li, Z. Z. Sun, W. Zheng, and Y. F. Zheng. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mater. Sci. Eng. C 33:699–706, 2013.

    CAS  Google Scholar 

  80. Mercado, Á. E., and Y. Yang. Strategies towards engineering vascularized bone graft substitutes. In: Bone Graft Substitutes and Bone Regenerative Engineering, edited by C. Laurencin, and T. Jiang. West Conshohocken, PA: ASTM International, 2014, pp. 299–334.

    Google Scholar 

  81. Mercado, A. E., X. Yang, X. He, and E. Jabbari. Effect of grafting BMP2-derived peptide to nanoparticles on osteogenic and vasculogenic expression of stromal cells. J. Tissue Eng. Regen. Med. 8:15–28, 2014.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Mercado-Pagán, Á. E., Y. Kang, D. F. E. Ker, S. Park, J. Yao, J. Bishop, and Y. P. Yang. Synthesis and characterization of novel elastomeric poly(D, L-lactide urethane) maleate composites for bone tissue engineering. Eur. Polym. J. 49:3337–3349, 2013.

    PubMed Central  PubMed  Google Scholar 

  83. Mercado-Pagán, Á. E., D. F. E. Ker, and Y. Yang. Hemocompatibility evaluation of small elastomeric hollow fiber membranes as vascular substitutes. J. Biomater. Appl. 29:557–565, 2014.

    PubMed  Google Scholar 

  84. Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D.-H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Mizrahi, O., D. Sheyn, W. Tawackoli, I. Kallai, A. Oh, S. Su, X. Da, P. Zarrini, G. Cook-Wiens, D. Gazit, and Z. Gazit. BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells. Gene Ther. 20:370–377, 2013.

    CAS  PubMed  Google Scholar 

  86. Morozowich, N. L., J. L. Nichol, and H. R. Allcock. Investigation of apatite mineralization on antioxidant polyphosphazenes for bone tissue engineering. Chem. Mater. 24:3500–3509, 2012.

    CAS  Google Scholar 

  87. Moshaverinia, A., S. Ansari, C. Chen, X. Xu, K. Akiyama, M. L. Snead, H. H. Zadeh, and S. Shi. Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials 34:6572–6579, 2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Nauth, A., P. V. Giannoudis, T. A. Einhorn, K. D. Hankenson, G. E. Friedlaender, R. Li, and E. H. Schemitsch. Growth factors: beyond bone morphogenetic proteins. J. Orthop. Trauma 24:543–546, 2010.

    PubMed  Google Scholar 

  89. Neff, L. P., B. W. Tillman, S. K. Yazdani, M. A. Machingal, J. J. Yoo, S. Soker, B. W. Bernish, R. L. Geary, and G. J. Christ. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J. Vasc. Surg. 53:426–434, 2011.

    PubMed  Google Scholar 

  90. Nguyen, L. H., N. Annabi, M. Nikkhah, H. Bae, L. Binan, S. Park, Y. Kang, Y. Yang, and A. Khademhosseini. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng. Part B Rev. 18:363–382, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Nguyen, B.-N. B., and J. P. Fisher. In vivo techniques and strategies for enhanced vascularization of engineered bone. In: Vascularization—Regenerative Medicine and Tissue Engineering, edited by E. M. Brey. Boca Raton, FL: CRC Press, 2014, pp. 263–282.

    Google Scholar 

  92. Papadimitropoulos, A., A. Scherberich, S. Güven, N. Theilgaard, H. J. A. Crooijmans, F. Santini, K. Scheffler, A. Zallone, and I. Martin. A 3D in vitro bone organ model using human progenitor cells. Eur. Cells Mater. 21:445–458, 2011.

    CAS  Google Scholar 

  93. Papakostidis, C., M. Bhandari, and P. Giannoudis. Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J. 95:1673–1680, 2013.

    PubMed  Google Scholar 

  94. Patel, Z. S., S. Young, Y. Tabata, J. A. Jansen, M. E. K. Wong, and A. G. Mikos. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43:931–940, 2008.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Patterson, J., R. Siew, S. W. Herring, A. S. Lin, R. Guldberg, and P. S. Stayton. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31:6772–6781, 2010.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Pepper, M. S. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 8:21–43, 1997.

    CAS  PubMed  Google Scholar 

  97. Phemister, D. B. Changes in bones and joints resulting from interruption of circulation: I. General considerations and changes resulting from injuries. Arch. Surg. 41:436–472, 1940.

    Google Scholar 

  98. Pondrom, S. The AJT report: news and issues that affect organ and tissue transplantation. Am. J. Transplant. 10:1953–1954, 2010.

    PubMed  Google Scholar 

  99. Poshusta, A. K., J. A. Burdick, D. J. Mortisen, R. F. Padera, D. Ruehlman, M. J. Yaszemski, and K. S. Anseth. Histocompatibility of photocrosslinked polyanhydrides: a novel in situ forming orthopaedic biomaterial. J. Biomed. Mater. Res. A 64:62–69, 2003.

    PubMed  Google Scholar 

  100. Prodanov, L., C. M. Semeins, J. J. W. A. van Loon, J. te Riet, J. A. Jansen, J. Klein-Nulend, and X. F. Walboomers. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies. Acta Biomater. 9:6653–6662, 2013.

    CAS  PubMed  Google Scholar 

  101. Qu, D., J. Li, Y. Li, Y. Gao, Y. Zuo, Y. Hsu, and J. Hu. Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects. J. Biomed. Mater. Res. A 96A:543–551, 2011.

    CAS  Google Scholar 

  102. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10:817–822, 2011.

    CAS  PubMed  Google Scholar 

  103. Rivron, N., J. Liu, J. Rouwkema, J. de Boer, and C. van Blitterswijk. Engineering vascularised tissues in vitro. Eur. Cells Mater. 15:27–40, 2008.

    CAS  Google Scholar 

  104. Rouwkema, J., P. E. Westerweel, J. de Boer, M. C. Verhaar, and C. A. van Blitterswijk. The use of endothelial progenitor cells for prevascularized bone tissue engineering. Tissue Eng. Part A 15:2015–2027, 2009.

    CAS  PubMed  Google Scholar 

  105. Santos, M. I., K. Tuzlakoglu, S. Fuchs, M. E. Gomes, K. Peters, R. E. Unger, E. Piskin, R. L. Reis, and C. J. Kirkpatrick. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29:4306–4313, 2008.

    CAS  PubMed  Google Scholar 

  106. Sen, M., and T. Miclau. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38:S75–S80, 2007.

    PubMed  Google Scholar 

  107. Shanjani, Y., Y. Hu, E. Toyserkani, M. Grynpas, R. A. Kandel, and R. M. Pilliar. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies. J. Biomed. Mater. Res. B Appl. Biomater. 101B:972–980, 2013.

    CAS  Google Scholar 

  108. Sheng, M. H. C., K. H. W. Lau, and D. J. Baylink. Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone. J. Bone Metab. 21:41–54, 2014.

    PubMed Central  PubMed  Google Scholar 

  109. Staiger, M. P., A. M. Pietak, J. Huadmai, and G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.

    CAS  PubMed  Google Scholar 

  110. Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 11:18–25, 2008.

    CAS  Google Scholar 

  111. Sun, Y., C. Zhang, D. Jin, J. Sheng, X. Cheng, X. Liu, S. Chen, and B. Zeng. Free vascularised fibular grafting in the treatment of large skeletal defects due to osteomyelitis. Int. Orthop. 34:425–430, 2010.

    PubMed Central  PubMed  Google Scholar 

  112. Taylor, B. C., B. G. French, T. T. Fowler, J. Russell, and A. Poka. Induced membrane technique for reconstruction to manage bone loss. J. Am. Acad. Orthop. Surg. 20:142–150, 2012.

    PubMed  Google Scholar 

  113. Teixeira, S., H. Fernandes, A. Leusink, C. van Blitterswijk, M. P. Ferraz, F. J. Monteiro, and J. de Boer. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 93A:567–575, 2010.

    CAS  Google Scholar 

  114. Therriault, D., S. R. White, and J. A. Lewis. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2:265–271, 2003.

    CAS  PubMed  Google Scholar 

  115. Tremblay, P.-L., V. Hudon, F. Berthod, L. Germain, and F. A. Auger. Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am. J. Transplant. 5:1002–1010, 2005.

    PubMed  Google Scholar 

  116. Unger, R. E., K. Peters, M. Wolf, A. Motta, C. Migliaresi, and C. J. Kirkpatrick. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials 25:5137–5146, 2004.

    CAS  PubMed  Google Scholar 

  117. Wu, W., R. A. Allen, and Y. Wang. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat. Med. 18:1148–1153, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Yang, Y., Y. Kang, M. Sen, and S. Park. Bioceramics in tissue engineering. In: Biomaterials for Tissue Engineering: A Review of the Past and Future Trends, edited by J. Burdick, and R. Mauck. New York, NY: Springer Wien, 2010, pp. 179–208.

    Google Scholar 

  119. Yang, H., J. Li, Z. Zhou, and J. Ruan. Structural preparation and biocompatibility evaluation of highly porous tantalum scaffolds. Mater. Lett. 100:152–155, 2013.

    CAS  Google Scholar 

  120. Yang, P., C. Wang, Z. Shi, X. Huang, X. Dang, S. Xu, and K. Wang. Prefabrication of vascularized porous three-dimensional scaffold induced from rhVEGF165: a preliminary study in rats. Cells Tissues Organs 189:327–337, 2009.

    CAS  PubMed  Google Scholar 

  121. Zanetti, A. S., C. Sabliov, J. M. Gimble, and D. J. Hayes. Human adipose-derived stem cells and three-dimensional scaffold constructs: A review of the biomaterials and models currently used for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 101B:187–199, 2013.

    CAS  Google Scholar 

  122. Zeng, X., Y.-S. Zeng, Y.-H. Ma, L.-Y. Lu, B.-L. Du, W. Zhang, Y. Li, and W. Y. Chan. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant. 20:1881–1899, 2011.

    PubMed  Google Scholar 

  123. Zheng, Y., J. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J. A. López, and A. D. Stroock. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. USA 109:9342–9347, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Zimmermann, G., and A. Moghaddam. Allograft bone matrix versus synthetic bone graft substitutes. Injury 42(Supplement 2):S16–S21, 2011.

    PubMed  Google Scholar 

  125. Zioupos, P., and J. D. Currey. The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29:978–986, 1994.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of the following agencies: NIH R01AR057837 (NIAMS), NIH R01DE021468 (NIDCR), and DOD W81XWH-10-1-0966 (PRORP).

Conflict of interest

The authors have no conflicts of interest with respect to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzhi Yang.

Additional information

Associate Editor Nadya Lumelsky oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado-Pagán, Á.E., Stahl, A.M., Shanjani, Y. et al. Vascularization in Bone Tissue Engineering Constructs. Ann Biomed Eng 43, 718–729 (2015). https://doi.org/10.1007/s10439-015-1253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1253-3

Keywords

Navigation