Skip to main content
Log in

Nitinol Stent Oversizing in Patients Undergoing Popliteal Artery Revascularization: A Finite Element Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Nitinol stent oversizing is frequently performed in peripheral arteries to ensure a desirable lumen gain. However, the clinical effect of mis-sizing remains controversial. The goal of this study was to provide a better understanding of the structural and hemodynamic effects of Nitinol stent oversizing. Five patient-specific numerical models of non-calcified popliteal arteries were developed to simulate the deployment of Nitinol stents with oversizing ratios ranging from 1.1 to 1.8. In addition to arterial biomechanics, computational fluid dynamics methods were adopted to simulate the physiological blood flow inside the stented arteries. Results showed that stent oversizing led to a limited increase in the acute lumen gain, albeit at the cost of a significant increase in arterial wall stresses. Furthermore, localized areas affected by low Wall Shear Stress increased with higher oversizing ratios. Stents were also negatively impacted by the procedure as their fatigue safety factors gradually decreased with oversizing. These adverse effects to both the artery walls and stents may create circumstances for restenosis. Although the ideal oversizing ratio is stent-specific, this study showed that Nitinol stent oversizing has a very small impact on the immediate lumen gain, which contradicts the clinical motivations of the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cha, S.-H., M. H. Han, Y. H. Choi, C. J. Yoon, S. K. Baik, S. J. Kim, and K. H. Chang. Vascular responses in normal canine carotid arteries. Invest. Radiol. 38:95–101, 2003.

    Article  PubMed  Google Scholar 

  2. Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. molecular, cellular, and vascular behavior. J. Am. Coll. Radiol. 49:2379–2393, 2007.

    Article  CAS  Google Scholar 

  3. Chen, H. Y., A. K. Sinha, J. S. Choy, H. Zheng, M. Sturek, B. Bigelow, D. L. Bhatt, and G. S. Kassab. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress. AJP Heart Circ. Physiol. 301:H2254–H2263, 2011.

    Article  CAS  Google Scholar 

  4. Chiastra, C., S. Morlacchi, D. Gallo, U. Morbiducci, R. Cárdenes, I. Larrabide, and F. Migliavacca. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J. R. Soc. Interface 10:20130193, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Conway, C., J. P. McGarry, and P. E. McHugh. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann. Biomed. Eng. 42:2425–2439, 2014.

    Article  CAS  PubMed  Google Scholar 

  6. Early, M., C. Lally, P. J. Prendergast, and D. J. Kelly. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput. Methods Biomech. Biomed. Eng. 12:25–33, 2009.

    Article  Google Scholar 

  7. Elsheikh, A., C. Whitford, R. Hamarashid, W. Kassem, A. Joda, and P. Büchler. Stress free configuration of the human eye. Med. Eng. Phys. 35:211–216, 2013.

    Article  PubMed  Google Scholar 

  8. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gökgöl, C., N. Diehm, and P. Büchler. Quantification of deformation of the femoro-popliteal arterial tract during leg flexion in subjects with peripheral arterial disease. J. Endovasc. Ther. 20:825–835, 2013.

    Article  Google Scholar 

  10. Gornik, H. L., and J. A. Beckman. Cardiology patient page. Peripheral arterial disease. Circulation 111:e169–e172, 2005.

    Article  PubMed  Google Scholar 

  11. Hoffmann, R., G. S. Mintz, J. J. Popma, L. F. Satler, A. D. Pichard, K. M. Kent, C. Walsh, P. Mackell, and M. B. Leon. Chronic arterial responses to stent implantation: a serial intravascular ultrasound analysis of Palmaz–Schatz stents in native coronary arteries. J. Am. Coll. Cardiol. 28:1134–1139, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. Holzapfel, G. A. Mechanics of Angioplasty: wall, balloon and stent. In: Mechanics in Biology, AMD-Vol. 242/BED-Vol. 46, edited by J. Casey, and G. Bao. New York: The American Society of Mechanical Engineers, 2000, pp. 141–156.

    Google Scholar 

  13. Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.

    Article  PubMed  Google Scholar 

  14. Huo, Y., T. Wischgoll, and G. S. Kassab. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 293:H2959–H2970, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Katritsis, D. G., A. Theodorakakos, I. Pantos, M. Gavaises, N. Karcanias, and E. P. Efstathopoulos. Flow patterns at stented coronary bifurcations: computational fluid dynamics analysis. Circ. Cardiovasc. Interv. 5:530–539, 2012.

    Article  PubMed  Google Scholar 

  16. Kirsch, E. C., M. S. Khangure, P. Morling, T. J. York, and W. McAuliffe. Oversizing of self-expanding stents : influence on the development of neointimal hyperplasia of the carotid artery in a canine model. Am. J. Neuroradiol. 23:121–127, 2002.

    PubMed  Google Scholar 

  17. Kröger, K., F. Santosa, and M. Goyen. Biomechanical incompatibility of popliteal stent placement. J. Endovasc. Ther. 11:686–694, 2004.

    Article  PubMed  Google Scholar 

  18. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl. Physiol. 98:947–957, 2005.

    Article  PubMed  Google Scholar 

  19. Milnor, W. R. Hemodynamics. Baltimore: Willliams & Wilkins, 1989.

    Google Scholar 

  20. Mortier, P., G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, P. Verdonck, and B. Verhegghe. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38:88–99, 2010.

    Article  PubMed  Google Scholar 

  21. Pelton, A. R., V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Piamsomboon, C., G. S. Roubin, M. W. Liu, S. S. Iyer, A. Mathur, L. S. Dean, C. R. Gomez, J. J. Vitek, N. Chattipakorn, and G. Yates. Relationship between oversizing of self-expanding stents and late loss index in carotid stenting. Cathet. Cardiovasc. Diagn. 143:139–143, 1998.

    Article  Google Scholar 

  23. Poon, E. K. W., P. Barlis, S. Moore, W.-H. Pan, Y. Liu, Y. Ye, Y. Xue, S. J. Zhu, and A. S. H. Ooi. Numerical investigations of the haemodynamic changes associated with stent malapposition in an idealised coronary artery. J. Biomech. 47:2843–2851, 2014.

    Article  PubMed  Google Scholar 

  24. Rebelo, N., R. Fu, and M. Lawrenchuk. Study of a nitinol stent deployed into anatomically accurate artery geometry and subjected to realistic service loading. J. Mater. Eng. Perform. 18:655–663, 2009.

    Article  CAS  Google Scholar 

  25. Rikhtegar, F., J. A. Knight, U. Olgac, S. C. Saur, D. Poulikakos, W. Marshall, P. C. Cattin, H. Alkadhi, and V. Kurtcuoglu. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries. Atherosclerosis 221:432–437, 2012.

    Article  CAS  PubMed  Google Scholar 

  26. Rikhtegar, F., F. Pacheco, C. Wyss, K. S. Stok, H. Ge, R. J. Choo, A. Ferrari, D. Poulikakos, R. Müller, and V. Kurtcuoglu. Compound ex vivo and in silico method for hemodynamic analysis of stented arteries. PLoS ONE 8:e58147, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Safar, M. E., P. Priollet, F. Luizy, J.-J. Mourad, P. Cacoub, H. Levesque, J. Benelbaz, P. Michon, M. Herrmann, and J. Blacher. Peripheral arterial disease and isolated systolic hypertension: the ATTEST study. J. Hum. Hypertens. 23:182–187, 2009.

    Article  CAS  PubMed  Google Scholar 

  28. Saguner, A. M., T. Traupe, L. Räber, N. Hess, Y. Banz, A. R. Saguner, N. Diehm, and O. M. Hess. Oversizing and restenosis with self-expanding stents in iliofemoral arteries. Cardiovasc. Intervent. Radiol. 35:906–913, 2012.

    Article  PubMed  Google Scholar 

  29. Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, G. Biamino, and A. Schmidt. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45:312–315, 2005.

    Article  PubMed  Google Scholar 

  30. Schillinger, M., S. Sabeti, P. Dick, J. Amighi, W. Mlekusch, O. Schlager, C. Loewe, M. Cejna, J. Lammer, and E. Minar. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation 115:2745–2749, 2007.

    Article  PubMed  Google Scholar 

  31. Schillinger, M., S. Sabeti, C. Loewe, P. Dick, J. Amighi, W. Mlekusch, O. Schlager, M. Cejna, J. Lammer, and E. Minar. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N. Engl. J. Med. 354:1879–1888, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Schulze-bauer, C. A. J., P. Regitnig, and G. A. Holzapfel. Mechanics of the human femoral adventitia including the high-pressure response. Am. J. Physiol. Heart. Circ. Physiol. 282:2427–2440, 2002.

    Article  Google Scholar 

  33. Seo, T., L. G. Schachter, and A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444–456, 2005.

    Article  PubMed  Google Scholar 

  34. Stiegler, H., and R. Brandl. Importance of ultrasound for diagnosing periphereal arterial disease. Ultraschall Med. 30:334–374, 2009.

    Article  CAS  PubMed  Google Scholar 

  35. Tai, N. R., A. Giudiceandrea, H. J. Salacinski, A. M. Seifalian, and G. Hamilton. In vivo femoropopliteal arterial wall compliance in subjects with and without lower limb vascular disease. J. Vasc. Surg. 30:936–945, 1999.

    Article  CAS  PubMed  Google Scholar 

  36. Thompson, R. B., and E. R. Mcveigh. Real-time volumetric flow measurements with complex-difference MRI. Magn. Reson. Med. 50:1248–1255, 2008.

    Article  Google Scholar 

  37. Timmins, L. H., C. A. Meyer, M. R. Moreno, and J. E. Moore. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. J. Endovasc. Ther. 15:643–654, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91:955–967, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wu, W., W.-Q. Wang, D.-Z. Yang, and M. Qi. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40:2580–2585, 2007.

    Article  PubMed  Google Scholar 

  40. Zhao, S., L. Gu, and S. R. Froemming. Finite element analysis of the implantation of a self-expanding stent: impact of lesion calcification. J. Med. Device. 6:021001, 2012.

    Article  Google Scholar 

  41. Zhao, H. Q., A. Nikanorov, R. Virmani, R. Jones, E. Pacheco, and L. B. Schwartz. Late stent expansion and neointimal proliferation of oversized Nitinol stents in peripheral arteries. Cardiovasc. Intervent. Radiol. 32:720–726, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the Research Council of the Kantonsspital Aarau, the Swiss Heart Foundation, the Gotthard Schettler Foundation and the Swiss National Science Foundation. The authors have no commercial, proprietary, or financial interest in any products or companies described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Diehm.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökgöl, C., Diehm, N., Nezami, F.R. et al. Nitinol Stent Oversizing in Patients Undergoing Popliteal Artery Revascularization: A Finite Element Study. Ann Biomed Eng 43, 2868–2880 (2015). https://doi.org/10.1007/s10439-015-1358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1358-8

Keywords

Navigation