Skip to main content
Log in

Calibrating a Predictive Model of Tumor Growth and Angiogenesis with Quantitative MRI

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The spatiotemporal variations in tumor vasculature inevitably alters cell proliferation and treatment efficacy. Thus, rigorous characterization of tumor dynamics must include a description of this phenomenon. We have developed a family of biophysical models of tumor growth and angiogenesis that are calibrated with diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast-enhanced (DCE-) MRI data to provide individualized tumor growth forecasts. Tumor and blood volume fractions were evolved using two, coupled partial differential equations consisting of proliferation, diffusion, and death terms. To evaluate these models, rats (n = 8) with C6 gliomas were imaged seven times. The tumor volume fraction was estimated using DW-MRI, while DCE-MRI provided estimates of the blood volume fraction. The first three time points were used to calibrate model parameters, which were then used to predict growth at the remaining four time points and compared directly to the measurements. The best performing model predicted tumor growth with less than 10.3% error in tumor volume and with less than 9.4% error at the voxel-level at all prediction time points. The best performing model resulted in less than 9.3% error in blood volume at the voxel-level. This pre-clinical study demonstrates the potential for image-based, mechanistic modeling of tumor growth and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Akaike, H. A new look at the statistical model identification. New York: Springer, 1974.

    Google Scholar 

  2. Anderson, A. R. A., and M. A. J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60:857–899, 1998.

    Article  CAS  PubMed  Google Scholar 

  3. Barnes, S. L., A. G. Sorace, M. E. Loveless, J. G. Whisenant, and T. E. Yankeelov. Correlation of tumor characteristics derived from DCE-MRI and DW-MRI with histology in murine models of breast cancer. NMR Biomed. 1:1–2, 2015. https://doi.org/10.1002/nbm.3377.

    Article  CAS  Google Scholar 

  4. Barnes, S. L., A. G. Sorace, J. G. Whisenant, J. O. McIntyre, H. Kang, and T. E. Yankeelov. DCE- and DW-MRI as early imaging biomarkers of treatment response in a preclinical model of triple negative breast cancer. NMR Biomed. 30:e3799, 2017.

    Article  CAS  Google Scholar 

  5. Burger, M., M. Di Francesco, J. Pietschmann, and B. Schlake. Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42:2842–2871, 2010.

    Article  Google Scholar 

  6. Cheng, H.-L. M., C. Wallis, Z. Shou, and W. A. Farhat. Quantifying angiogenesis in VEGF-enhanced tissue-engineered bladder constructs by dynamic contrast-enhanced MRI using contrast agents of different molecular weights. J. Magn. Reson. Imaging 25:137–145, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Deisboeck, T. S., and Z. Wang. Cancer dissemination: a consequence of limited carrying capacity? Med. Hypotheses 69:173–177, 2007.

    Article  PubMed  Google Scholar 

  8. Garg, I., and M. I. Miga. Preliminary investigation of the inhibitory effects of mechanical stress in tumor growth. Bellingham: International Society for Optics and Photonics, 2008.

    Book  Google Scholar 

  9. Gevertz, J. L., and S. Torquato. Modeling the effects of vasculature evolution on early brain tumor growth. J. Theor. Biol. 243:517–531, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Gillies, R. J., P. A. Schornack, T. W. Secomb, and N. Raghunand. Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1:197–207, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Helmlinger, G., P. A. Netti, H. C. Lichtenbeld, R. J. Melder, and R. K. Jain. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotech. 15:778–783, 1997.

    Article  CAS  Google Scholar 

  12. Hormuth II, D., S. B. Eldridge, J. Weis, M. I. Miga, and T. E. Yankeelov. Mechanically coupled reaction-diffusion model to predict glioma growth: methodological details. In: Springer Methods and Protocols: Cancer Systems Biology, edited by L. von Stechow. New York: Springer, pp. 225–241, 2018. https://doi.org/10.1007/978-1-4939-7493-1_11

  13. Hormuth, II, D. A., J. T. Skinner, M. D. Does, and T. E. Yankeelov. A comparison of individual and population-derived vascular input functions for quantitative DCE-MRI in rats. Magn. Reson. Imaging 32:397–401, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hormuth, D. A., J. A. Weis, S. Barnes, M. I. Miga, V. Quaranta, and T. E. Yankeelov. Biophysical modeling of in vivo glioma response after whole-brain radiation therapy in a murine model of brain cancer. Int. J. Radiat. Oncol. 100:1270–1279, 2018.

    Article  Google Scholar 

  15. Hormuth, II, D. A., J. A. Weis, S. L. Barnes, M. I. Miga, E. C. Rericha, V. Quaranta, and T. E. Yankeelov. A mechanically-coupled reaction-diffusion model that incorporates intra-tumoral heterogeneity to predict in vivo glioma growth. J. R. Soc. Interface 14:20161010, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huston III, J. Magnetic resonance elastography of the brain. In: Magnetic Resonance Elastography SE - 8. New York: Springer, pp. 89–98, 2014.

  17. Jain, R. K., E. di Tomaso, D. G. Duda, J. S. Loeffler, A. G. Sorensen, and T. T. Batchelor. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8:610–622, 2007.

    Article  CAS  PubMed  Google Scholar 

  18. Jarrett, A., D. Hormuth, II, S. Barnes, X. Feng, W. Huang, and T. Yankeelov. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results. Phys. Med. Biol. 63:105015, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neal, M. L., A. D. Trister, T. Cloke, R. Sodt, S. Ahn, A. L. Baldock, C. A. Bridge, A. Lai, T. F. Cloughesy, M. M. Mrugala, J. K. Rockhill, R. C. Rockne, and K. R. Swanson. Discriminating survival outcomes in patients with glioblastoma using a simulation-based. Patient-specific response metric. PLoS ONE 8:e51951, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Connor, J. P. B., A. Jackson, G. J. M. Parker, C. Roberts, and G. C. Jayson. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 9:167–177, 2012.

    Article  CAS  PubMed  Google Scholar 

  21. Padhani, A. R., G. Liu, D. Mu-Koh, T. L. Chenevert, H. C. Thoeny, T. Takahara, A. Dzik-Jurasz, B. D. Ross, M. Van Cauteren, D. Collins, D. A. Hammoud, G. J. S. Rustin, B. Taouli, and P. L. Choyke. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rong, Y., D. L. Durden, E. G. Van Meir, and D. J. Brat. “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J. Neuropathol. Exp. Neurol. 65:529–539, 2006.

    Article  PubMed  Google Scholar 

  23. Roque, T., L. Risser, V. Kersemans, S. Smart, D. Allen, P. Kinchesh, S. Gilchrist, A. L. Gomes, J. A. Schnabel, and M. A. Chappell. A DCE-MRI Driven 3-D reaction-diffusion model of solid tumour growth. IEEE Trans. Med. Imaging 1, 2017

  24. Sobol′, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55:271–280, 2001.

    Article  Google Scholar 

  25. Sourbron, S. P., and D. L. Buckley. Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 2013. https://doi.org/10.1002/nbm.2940.

    Article  PubMed  Google Scholar 

  26. Stamper, I. J., H. M. Byrne, M. R. Owen, and P. K. Maini. Modelling the role of angiogenesis and vasculogenesis in solid tumour growth. Bull. Math. Biol. 69:2737–2772, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Sugahara, T., Y. Korogi, M. Kochi, I. Ikushima, Y. Shigematu, T. Hirai, T. Okuda, L. Liang, Y. Ge, Y. Komohara, Y. Ushio, and M. Takahashi. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging 9:53–60, 1999.

    Article  CAS  PubMed  Google Scholar 

  28. Swanson, K. R., R. C. Rockne, J. Claridge, M. A. Chaplain, E. C. Alvord, and A. R. A. Anderson. Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res. 71:7366–7375, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weis, J. A., M. I. Miga, L. R. Arlinghaus, X. Li, V. Abramson, A. B. Chakravarthy, P. Pendyala, and T. E. Yankeelov. Predicting the response of breast cancer to neoadjuvant therapy using a mechanically coupled reaction-diffusion model. Cancer Res. 2015. https://doi.org/10.1158/0008-5472.can-14-2945.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yankeelov, T. E., R. G. Abramson, and C. C. Quarles. Quantitative multimodality imaging in cancer research and therapy. Nat. Rev. Clin. Oncol. 11:670–680, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yankeelov, T. E., and J. C. Gore. Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr. Med. Imaging Rev. 3:91–107, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yankeelov, T. E., V. Quaranta, K. J. Evans, and E. C. Rericha. Toward a science of tumor forecasting for clinical oncology. Cancer Res. 75:918–923, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Texas Advanced Computing Center (TACC) for providing computing resources. This work was supported through funding from the National Cancer Institute R01CA138599 and U01CA174706, CPRIT RR160005, and AAPM Research Seed Funding.

Funding

Grant Sponsor: NCI U01 CA174706, NCI U01 CA154602, CPRIT RR160005, AAPM Research Seed Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hormuth II.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hormuth, D.A., Jarrett, A.M., Feng, X. et al. Calibrating a Predictive Model of Tumor Growth and Angiogenesis with Quantitative MRI. Ann Biomed Eng 47, 1539–1551 (2019). https://doi.org/10.1007/s10439-019-02262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02262-9

Keywords

Navigation