Skip to main content

Advertisement

Log in

Level of Adherence and HIV RNA Suppression in the Current Era of Highly Active Antiretroviral Therapy (HAART)

  • Original Paper
  • Published:
AIDS and Behavior Aims and scope Submit manuscript

Abstract

The need to achieve ≥95 % adherence to HAART for treatment effectiveness may be a barrier for universal initiation at early stages of HIV. Using longitudinal data collected from 2006 to 2011 from cohort studies of MSM (MACS) and IDUs (ALIVE study), we estimated the minimum adherence needed to achieve HIV RNA suppression (<50 copies/mL), defined as the level at which at least 80 % were virally suppressed, and the odds of suppression was not significantly different than that observed with ≥95 % adherence. In the MACS, ≥80 % suppression was observed with 80–84 % adherence and the odds ratio for suppression (vs. ≥95 % adherence) was 1.43 (0.61, 3.33). In the ALIVE study where <35 % were on newer drugs, only 71.4 % were suppressed among those who reported ≥95 % adherence. Although IDUs on older HAART regimens may need to be ≥95 % adherent, concerns related to non-adherence may be less of a barrier to initiation of modern HAART regimens.

Resumen

En las primeras etapas del VIH, la necesidad de lograr ≥95 % de adherencia al TARGA para la efectividad del tratamiento puede ser una barrera para la iniciación universal. Utilizando datos longitudinales recogidos entre 2006 y 2011 de los estudios de cohorte de HSH (MACS) y UDI (estudio ALIVE), se estimó la adherencia mínima necesaria para lograr la supresión del ARN del VIH (<50 copies/mL), que se define como conseguir reducer la carga viral en al menos el 80 % de los sujetos y de tal forma que la probabilidad de supresión no sea significativamente diferente de la observada con ≥95 % de adherencia. En el MACS, ≥80 % de supresión se observó con la adhesión de 80-84 %, y el cociente de oportunidad para la supresión (vs. ≥95 % de adhesión) fue de 1.43 (0.61, 3.33). En el estudio ALIVE donde <35 % usaron las drogas más nuevas, sólo el 71.4 % fueron suprimidos entre los que reportaron ≥95 % de adherencia. Aunque los UDI en los regímenes TARGA mas anticuados pueden necesitar ser ≥95 % adherente, las preocupaciones relacionadas con la falta de adherencia no parece que debe ser considerada comouna barrera para la iniciación de los regímenes TARGA modernas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Global Health Observatory (GHO). World Health Organization. http://www.who.int/gho/hiv/en/. Accessed 5 Jun 2013.

  2. Chu C, Umanski G, Blank A, Meissner P, Grossberg R, Selwyn PA. Comorbidity-related treatment outcomes among HIV-infected adults in the Bronx, NY. J Urban Health. 2011;88(3):507–16.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Adeyemi OM, Badri SM, Max B, Chinomona N, Barker D. HIV infection in older patients. Clin Infect Dis. 2003;36:1347.

    Article  CAS  PubMed  Google Scholar 

  4. Manfredi R. HIV infection and advanced age emerging epidemiological, clinical, and management issues. Ageing Res Rev. 2004;3(1):31–54.

    Article  PubMed  Google Scholar 

  5. Deeks SG, Phillips AN. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ. 2009;338:288–92.

    Article  Google Scholar 

  6. Wada N, Jacobson LP, Cohen M, French A, Phair J, Muñoz A. Cause-specific life expectancies after 35 years of age for human immunodeficiency syndrome-infected and human immunodeficiency syndrome-negative individuals followed simultaneously in long-term cohort studies, 1984–2008. Am J Epidemiol. 2013;177(2):116–25.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Kobin BA, Sheth NU. Levels of adherence required for virologic suppression among newer antiretroviral medications. Ann Pharmacother. 2011;45:372–9.

    Article  CAS  PubMed  Google Scholar 

  8. Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med. 2000;133:21–30.

    Article  CAS  PubMed  Google Scholar 

  9. Nelson M, Girard PM, DeMasi R, et al. Suboptimal adherence to darunavir/ritonavir has minimal effect on efficacy compared with lopinavir/ritonavir in treatment-naïve HIV-infected patients: 96 week ARTEMIS data. J Antimicrob Chemother. 2010;65:1505–9.

    Article  CAS  PubMed  Google Scholar 

  10. Cooper V, Horne R, Gellaitry G, et al. The impact of once-nightly versus twice-daily dosing and baseline beliefs about HAART on adherence to efavirenz-based HAART over 48 weeks: the NOCTE study. J Acquir Immune Defic Syndr. 2010;53(3):369–77.

    Article  CAS  PubMed  Google Scholar 

  11. Chesney M. Adherence to HAART regimens. AIDS Patient Care STDS. 2003;17(4):169–77.

    Article  PubMed  Google Scholar 

  12. Silverberg MJ, Leyden W, Horberg MA, DeLorenze GN, Klein D, Quesenberry CP Jr. Older age and the response to and tolerability of antiretroviral therapy. Arch Intern Med. 2007;267:684–91.

    Article  Google Scholar 

  13. Gulick RM. Adherence to antiretroviral therapy: how much is enough. Clin Infect Dis. 2006;43(7):942–4.

    Article  PubMed  Google Scholar 

  14. Westergaard RP, Ambrose BK, Mehta SH, Kirk GD. Provider and clinic-level correlates of deferring antiretroviral therapy for people who inject drugs: a survey of North American HIV providers. J Int AIDS Soc. 2012;15(1):10.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zaric GS, Bayoumi AM, Brandeau ML, Owens DK. The cost-effectiveness of counseling strategies to improve adherence to highly active antiretroviral therapy among men who have sex with men. Med Decis Mak. 2008;28:359–76.

    Article  Google Scholar 

  16. Good Evidence Medication Adherence Interventions. http://www.cdc.gov/hiv/topics/research/prs/ma-good-evidence-interventions.htm. Accessed 14 July 2013.

  17. Westergaard RP, Hess T, Astemborski J, Mehta SH, Kirk GD. Longitudinal changes in engagement in care and viral load suppression for HIV-infected injection drug users. AIDS. 2013;27(16):2559–66.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Monitoring HIV Care in the United States. http://www.iom.edu/~/media/Files/Report%20Files/2012/Monitoring-HIV-Care-in-the-United-States/MonitoringHIV_rb.pdf. Accessed 20 Jun 2013.

  19. Kaslow RA, Ostrow DG, Detels R, Phair JP, Polk BF, Rinaldo CR Jr. The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. Am J Epidemiol. 1987;126:310–8.

    Article  CAS  PubMed  Google Scholar 

  20. CDC. 1993 Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR 1992;41[No. RR-17]. http://www.cdc.gov/mmwr/preview/mmwrhtml/00018871.htm. Accessed 10 Jun 2014.

  21. Vlahov D, Anthony JC, Munoz A, et al. The ALIVE study, a longitudinal study of HIV-1 infection in intravenous drug users: description of methods and characteristics of participants. NIDA Res Monogr. 1991;109:75–100.

    CAS  PubMed  Google Scholar 

  22. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. http://www.aidsinfo.nih.gov/contentfiles/lvguidelines/adultandadolescentgl.pdf. Accessed 1 Jul 2013.

  23. Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.

    Article  Google Scholar 

  24. Gallant JE, De Jesus E, Arribas JR, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine and efavirenz for HIV. N Eng J Med. 2006;354:251–60.

    Article  CAS  Google Scholar 

  25. Cooper V, Horne R, Moyle G, Fisher M, The SWEET Study Group. Simplification with easier emtricitabine and tenofovir (SWEET): results of a 48 week analysis of patients’ perceptions of treatment and adherence. In: The XVII international AIDS conference. Mexico City, August 3–8; 2008 [abstract].

  26. Hughes CA, Robinson L, Tseng A, Macarthur RD. New antiretroviral drugs: a review of the efficacy, safety, pharmacokinetics, and resistance profile of tipranavir, darunavir, etravirine, rilpivirine, maraviroc, and raltegravir. Expert Opin Pharmacother. 2009;10(15):2445–66.

    Article  CAS  PubMed  Google Scholar 

  27. Shuter J, Sarlo JA, Kanmaz KA, Rode RA, Zingman BS. HIV-infected patients receiving lopinavir/ritonavir-based antiretroviral therapy achieve high rates of virologic suppression despite adherence rates below 95 %. J Acquir Immune Defic Syndr. 2007;45(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  28. Maggiolo F, Airoldi M, Kleinloog HG, et al. Effect of adherence to HAART on virologic outcome and on the selection of resistance-conferring mutations in NNRTI- or PI-treated patients. HIV Clin Trials. 2007;8(5):282–92.

    Article  PubMed  Google Scholar 

  29. Mehta SH, Kirk GD, Astemborski J, Galai N, Celentano CD. Temporal trends in highly active antiretroviral therapy initiation among injection drug users in Baltimore, Maryland, 1996–2008. Clin Infect Dis. 2010;50(12):1664–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kavasery R, Galai N, Astemborski J, et al. Nonstructured treatment interruptions among injection drug users in Baltimore, MD. J Acquir Immune Defic Syndr. 2009;50(4):360–6.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ho MP, Bryson CL, Rumsfeld JS. Medication adherence: its importance in cardiovascular outcomes. Circulation. 2009;119:3028–35.

    Article  PubMed  Google Scholar 

  32. Kleeberger CA, Phair JP, Strathdee SA, Detels R, Kingsley L, Jacobson LP. Determinants of heterogeneous adherence to HIV-antiretroviral therapies in the Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr. 2001;26(1):82–92.

    Article  CAS  PubMed  Google Scholar 

  33. Kleeberger CA, Buechner J, Palella F, et al. Changes in adherence to highly active antiretroviral therapy medications in the Multicenter AIDS Cohort Study. AIDS. 2004;18(4):683–8.

    Article  PubMed  Google Scholar 

  34. Lazo M, Gange SJ, Wilson TE, et al. Patterns and predictors of changes in adherence to highly active antiretroviral therapy: longitudinal study of men and women. Clin Infect Dis. 2007;45(10):1377–85.

    Article  PubMed  Google Scholar 

  35. Vlahov D, Celentano DD. Access to highly active antiretroviral therapy for injection drug users: adherence, resistance, and death. Cad Saude Publica. 2006;22:705–18.

    Article  PubMed  Google Scholar 

  36. Malta M, Magnanini MMF, Strathdee SA, Bastos FI. Adherence to antiretroviral therapy among HIV-infected drug users: a meta-analysis. AIDS Behav. 2010;14:731–47.

    Article  PubMed  Google Scholar 

  37. Kerr T, Palepu A, Barness G, et al. Psychosocial determinants of adherence to highly active antiretroviral therapy among injection drug users in Vancouver. Antivir Ther. 2004;9(3):407–14.

    PubMed  Google Scholar 

  38. Kerr T, Hogg RS, Yip B, et al. Validity of self-reported adherence among injection drug users. J Int Assoc Physicians AIDS Care (Chic). 2008;7(4):157–9.

    Article  Google Scholar 

  39. Cole SR, Jacobson LP, Tien PC, Kingsley L, Chmiel JS, Anastos K. Using marginal structural measurement-error models to estimate the long-term effect of antiretroviral therapy on incident AIDS or death. Am J Epidemiol. 2010;171:113–22.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Bangsberg D. Less than 95% adherence to nonnucleoside reverse-transcriptase inhibitor therapy can lead to viral suppression. Clin Infect Dis. 2006;43(7):939–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Multicenter AIDS Cohort Study (MACS) and AIDS Linked to the Intravenous Experience (ALIVE) study participants for their continued dedication. MACS centers (Principal Investigators) are at: Johns Hopkins University Bloomberg School of Public Health (Joseph Margolick), Northwestern University (Steven Wolinsky), University of California, Los Angeles (Roger Detels), University of Pittsburgh (Charles Rinaldo), and the Center for Analysis and Management of MACS, Johns Hopkins University Bloomberg School of Public Health (Lisa Jacobson). The MACS study is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD): U01-AI35042, U01-AI35040, U01-AI35039, U01-AI35041, UM1-AI35043, and UL1-TR000424 (JHU CTSA). The ALIVE study is funded by the National Institute on Drug Abuse (NIDA), a part of the National Institutes of Health (NIH): DA04334 and DA12568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa P. Jacobson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, S., Detels, R., Mehta, S.H. et al. Level of Adherence and HIV RNA Suppression in the Current Era of Highly Active Antiretroviral Therapy (HAART). AIDS Behav 19, 601–611 (2015). https://doi.org/10.1007/s10461-014-0927-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10461-014-0927-4

Keywords

Navigation