Skip to main content

Advertisement

Log in

Frederiksenia canicola gen. nov., sp. nov. isolated from dogs and human dog-bite wounds

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Polyphasic analysis was done on 24 strains of Bisgaard taxon 16 from five European countries and mainly isolated from dogs and human dog-bite wounds. The isolates represented a phenotypically and genetically homogenous group within the family Pasteurellaceae. Their phenotypic profile was similar to members of the genus Pasteurella. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry clearly identified taxon 16 and separated it from all other genera of Pasteurellaceae showing a characteristic peak combination. Taxon 16 can be further separated and identified by a RecN protein signature sequence detectable by a specific PCR. In all phylogenetic analyses based on 16S rRNA, rpoB, infB and recN genes, taxon 16 formed a monophyletic branch with intraspecies sequence similarity of at least 99.1, 90.8, 96.8 and 97.2 %, respectively. Taxon 16 showed closest genetic relationship with Bibersteinia trehalosi as to the 16S rRNA gene (95.9 %), the rpoB (89.8 %) and the recN (74.4 %), and with Actinobacillus lignieresii for infB (84.9 %). Predicted genome similarity values based on the recN gene sequences between taxon 16 isolates and the type strains of known genera of Pasteurellaceae were below the genus level. Major whole cell fatty acids for the strain HPA 21T are C14:0, C16:0, C18:0 and C16:1 ω7c/C15:0 iso 2OH. Major respiratory quinones are menaquinone-8, ubiquinone-8 and demethylmenaquinone-8. We propose to classify these organisms as a novel genus and species within the family of Pasteurellaceae named Frederiksenia canicola gen. nov., sp. nov. The type strain is HPA 21T (= CCUG 62410T = DSM 25797T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahamian FM, Goldstein EJ (2011) Microbiology of animal bite wound infections. Clin Microbiol Rev 24:231–246

    Article  PubMed Central  PubMed  Google Scholar 

  • Angen O, Mutters R, Caugant DA, Olsen JE, Bisgaard M (1999) Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA–DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. Int J Syst Bacteriol 49:67–86

    Article  CAS  PubMed  Google Scholar 

  • Angen O, Ahrens P, Kuhnert P, Christensen H, Mutters R (2003) Proposal of Histophilus somni gen. nov., sp. nov. for the three species incertae sedis ‘Haemophilus somnus’, ‘Haemophilus agni’ and ‘Histophilus ovis’. Int J Syst Evol Microbiol 53:1449–1456

    Article  CAS  PubMed  Google Scholar 

  • Bisgaard M, Mutters R (1986) Characterization of some previously unclassified “Pasteurella” spp. obtained from the oral cavity of dogs and cats and description of a new species tentatively classified with the family Pasteurellaceae Pohl 1981 and provisionally called taxon 16. Acta Pathol Microbiol Immunol Scand [B] 94:177–184

    CAS  Google Scholar 

  • Bisgaard M, Christensen JP, Bojesen AM, Christensen H (2007) Avibacterium endocarditidis sp. nov., isolated from valvular endocarditis in chickens. Int J Syst Evol Microbiol 57:1729–1734

    Article  PubMed  Google Scholar 

  • Blackall PJ, Christensen H, Beckenham T, Blackall LL, Bisgaard M (2005) Reclassification of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov. Int J Syst Evol Microbiol 55:353–362

    Article  CAS  PubMed  Google Scholar 

  • Blackall PJ, Bojesen AM, Christensen H, Bisgaard M (2007) Reclassification of [Pasteurella] trehalosi as Bibersteinia trehalosi gen. nov., comb. nov. Int J Syst Evol Microbiol 57:666–674

    Article  CAS  PubMed  Google Scholar 

  • Christensen H, Bisgaard M (2004) Revised definition of Actinobacillus sensu stricto isolated from animals. A review with special emphasis on diagnosis. Vet Microbiol 99:13–30

    Article  CAS  PubMed  Google Scholar 

  • Christensen H, Bisgaard M (2008) Taxonomy and biodiversity of members of Pasteurellaceae. In: Kuhnert P, Christensen H (eds) Pasteurellaceae: biology, genomics and molecular aspects. Caister Academic Press, Norfolk, pp 1–26

    Google Scholar 

  • Christensen H, Bisgaard M, Bojesen AM, Mutters R, Olsen JE (2003) Genetic relationships among avian isolates classified as Pasteurella haemolytica, ‘Actinobacillus salpingitidis’ or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov., comb. nov. and description of additional genomospecies within Gallibacterium gen. nov. Int J Syst Evol Microbiol 53:275–287

    Article  CAS  PubMed  Google Scholar 

  • Christensen H, Bisgaard M, Aalbaek B, Olsen JE (2004) Reclassification of Bisgaard taxon 33 with proposal of Volucribacter psittacicida gen. nov., sp. nov. and Volucribacter amazonae sp. nov. as new members of Pasteurellaceae. Int J Syst Evol Microbiol 54:813–818

    Article  CAS  PubMed  Google Scholar 

  • Christensen H, Kuhnert P, Busse HJ, Frederiksen WC, Bisgaard M (2007) Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. Int J Syst Evol Microbiol 57:166–178

    Article  CAS  PubMed  Google Scholar 

  • Christensen H, Korczak BM, Bojesen AM, Kuhnert P, Frederiksen W, Bisgaard M (2011) Classification of organisms previously reported as the SP and Stewart–Letscher groups, with descriptions of Necropsobacter gen. nov. and of Necropsobacter rosorum sp. nov. for organisms of the SP group. Int J Syst Evol Microbiol 61:1829–1836

    Article  CAS  PubMed  Google Scholar 

  • Christensen H, Bertelsen MF, Bojesen AM, Bisgaard M (2012) Classification of Pasteurella species B as Pasteurella oralis sp. nov. Int J Syst Evol Microbiol 62:1396–1401

    Article  CAS  PubMed  Google Scholar 

  • Christie R, Atkins NE, Munch-Petersen E (1944) A note on a lytic phenomenon shown by group B Streptococci. Aust J Exp Biol Med Sci 22:197–200

    Article  Google Scholar 

  • De Ley J, Mannheim W, Mutters R, Piechulla K, Tytgat R, Segers P, Bisgaard M, Frederiksen W, Hinz KH, Vanhoucke M (1990) Inter- and intrafamilial similarities of rRNA cistrons of the Pasteurellaceae. Int J Syst Bacteriol 40:126–137

    Article  PubMed  Google Scholar 

  • Dousse F, Thomann A, Brodard I, Korczak BM, Schlatter Y, Kuhnert P, Miserez R, Frey J (2008) Routine phenotypic identification of bacterial species of the family Pasteurellaceae isolated from animals. J Vet Diagn Invest 20:716–724

    Article  PubMed  Google Scholar 

  • Engelhard E, Kroppenstedt RM, Mutters R, Mannheim W (1991) Carbohydrate patterns, cellular lipoquinones, fatty acids and phospholipids of the genus Pasteurella sensu stricto. Med Microbiol Immunol 180:79–92

    CAS  PubMed  Google Scholar 

  • Forsblom B, Sarkiala-Kessel E, Kanervo A, Vaisanen ML, Helander M, Jousimies-Somer H (2002) Characterisation of aerobic gram-negative bacteria from subgingival sites of dogs-potential bite wound pathogens. J Med Microbiol 51:207–220

    CAS  PubMed  Google Scholar 

  • Foster G, Ross HM, Malnick H, Willems A, Hutson RA, Reid RJ, Collins MD (2000) Phocoenobacter uteri gen. nov., sp. nov., a new member of the family Pasteurellaceae Pohl (1979) 1981 isolated from a harbour porpoise (Phocoena phocoena). Int J Syst Evol Microbiol 50:135–139

    Article  CAS  PubMed  Google Scholar 

  • Foster G, Higgins R, Leclair D, Korczak BM, Mikaelian I, Patterson IA, Kuhnert P (2011) Proposal of Bisgaardia hudsonensis gen. nov., sp. nov. and an additional genomospecies, isolated from seals, as new members of the family Pasteurellaceae. Int J Syst Evol Microbiol 61:3016–3022

    Article  CAS  PubMed  Google Scholar 

  • Ganiere JP, Escande F, Andre G, Larrat M (1993) Characterization of Pasteurella from gingival scrapings of dogs and cats. Comp Immunol Microbiol Infect Dis 16:77–85

    Article  CAS  PubMed  Google Scholar 

  • Gregersen RH, Neubauer C, Christensen H, Bojesen AM, Hess M, Bisgaard M (2009) Comparative studies on [Pasteurella] testudinis and [Pasteurella] testudinis-like bacteria and proposal of Chelonobacter oris gen. nov., sp. nov. as a new member of the Pasteurellaceae. Int J Syst Evol Microbiol 59:1583–1588

    Article  CAS  PubMed  Google Scholar 

  • Hansen MJ, Bertelsen MF, Christensen H, Bojesen AM, Bisgaard M (2012) Otariodibacter oris gen. nov., sp. nov., a member of the family Pasteurellaceae isolated from the oral cavity of pinnipeds. Int J Syst Evol Microbiol 62:2572–2578

    Article  CAS  PubMed  Google Scholar 

  • Inzana TJ, Johnson JL, Shell L, Moller K, Kilian M (1992) Isolation and characterization of a newly identified Haemophilus species from cats. J Clin Microbiol 30:2108–2112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kainz A, Lubitz W, Busse HJ (2000) Genomic fingerprints, ARDRA profiles and quinone systems for classification of Pasteurella sensu stricto. Syst Appl Microbiol 23:494–503

    Article  CAS  PubMed  Google Scholar 

  • Kampfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Korczak BM, Kuhnert P (2008) Phylogeny of Pasteurellaceae. In: Kuhnert P, Christensen H (eds) Pasteurellaceae: biology, genomics and molecular aspects. Caister Academic Press, Norfolk, pp 27–52

    Google Scholar 

  • Korczak B, Christensen H, Emler S, Frey J, Kuhnert P (2004) Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int J Syst Evol Microbiol 54:1393–1399

    Article  CAS  PubMed  Google Scholar 

  • Kroppenstedt RM, Mannheim W (1989) Lipoquinones in members of the family Pasteurellaceae. Int J Syst Bacteriol 39:304–308

    Article  CAS  Google Scholar 

  • Kuhnert P, Korczak BM (2006) Prediction of whole genome DNA–DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152:2537–2548

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert P, Frey J, Lang NP, Mayfield L (2002) A phylogenetic analysis of Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis field strains reveals a clear species clustering. Int J Syst Evol Microbiol 52:1391–1395

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert P, Korczak B, Falsen E, Straub R, Hoops A, Boerlin P, Frey J, Mutters R (2004) Nicoletella semolina gen. nov., sp. nov., a new member of Pasteurellaceae isolated from horses with airway disease. J Clin Microbiol 42:5542–5548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhnert P, Scholten E, Haefner S, Mayor D, Frey J (2010) Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int J Syst Evol Microbiol 60:44–50

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert P, Bisgaard M, Korczak BM, Schwendener S, Christensen H, Frey J (2012) Identification of animal Pasteurellaceae by MALDI-TOF mass spectrometry. J Microbiol Methods 89:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  • Mayor D, Korczak BM, Christensen H, Bisgaard M, Frey J, Kuhnert P (2006) Distribution of RTX toxin genes in strains of [Actinobacillus] rossii and [Pasteurella] mairii. Vet Microbiol 116:194–201

    Article  CAS  PubMed  Google Scholar 

  • Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muhairwa AP, Christensen JP, Bisgaard M (2001) Relationships among Pasteurellaceae isolated from free ranging chickens and their animal contacts as determined by quantitative phenotyping, ribotyping and REA-typing. Vet Microbiol 78:119–137

    Article  CAS  PubMed  Google Scholar 

  • Mutters R, Ihm P, Pohl S, Frederiksen W, Mannheim W (1985) Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. Int J Syst Bacteriol 35:309–322

    Article  Google Scholar 

  • Mutters R, Mouahid M, Engelhard E, Mannheim W (1993) Characterization of the family Pasteurellaceae on the basis of cellular lipids and carbohydrates. Zentralbl Bakteriol 279:104–113

    Article  CAS  PubMed  Google Scholar 

  • Norskov-Lauritsen N, Kilian M (2006) Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int J Syst Evol Microbiol 56:2135–2146

    Article  PubMed  Google Scholar 

  • Norskov-Lauritsen N, Bruun B, Kilian M (2005) Multilocus sequence phylogenetic study of the genus Haemophilus with description of Haemophilus pittmaniae sp. nov. Int J Syst Evol Microbiol 55:449–456

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Dewhirst FE, Paster BJ, Busse HJ (2005) Family Pasteurellaceae. In: Garrity R (ed) Bergey’s manual of systematic bacteriology. Springer, New York; NY, pp 851–862

    Google Scholar 

  • Osawa R, Rainey FA, Fujisawa T, Lang E, Busse HJ, Walsh T, Stackebrandt E (1995) Lonepinella koalarum gen. nov., sp. nov., a new tannin–protein complex degrading bacterium. Syst Appl Microbiol 18:368–373

    Article  CAS  Google Scholar 

  • Saphir DA, Carter GR (1976) Gingival flora of the dog with special reference to bacteria associated with bites. J Clin Microbiol 3:344–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tindall BJ (1990a) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  • Tindall BJ (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Geoffrey Foster for sending strain M2500/96/3 and Andreas Thomann for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kuhnert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2014_129_MOESM1_ESM.pdf

Comparison of mass spectra profiles of Frederiksenia canicola and type species of currently validated genera. Peak locations and their relative intensities are indicated. Spectra were taken from the Biotyper database V.3 (indicated by an asterisk) and from Kuhnert P, Bisgaard M, Korczak BM, Schwendener S, Christensen H, Frey J (2012) Identification of animal Pasteurellaceae by MALDI-TOF mass spectrometry. J Microbiol Methods 89:1–7 (PDF 85 kb)

10482_2014_129_MOESM2_ESM.pdf

Phylogenetic relationship of Frederiksenia canicola and other members of the family Pasteurellaceae based on Neighbor Joining tree of partial rpoB sequences. Escherichia coli was included as an outgroup to root the dendrogram. The clustering was supported by cophenetic correlation. The scale bar indicates sequence differences between the taxa. *Gene sequence ID, Oralgen www.oralgen.lanl.gov (PDF 82 kb)

10482_2014_129_MOESM3_ESM.pdf

Phylogenetic relationship of Frederiksenia canicola and other members of the family Pasteurellaceae based on Neighbor Joining tree of partial infB sequences. The clustering was supported by cophenetic correlation. The scale bar indicates sequence differences between the taxa. *Gene sequence ID, Oralgen www.oralgen.lanl.gov (PDF 82 kb)

10482_2014_129_MOESM4_ESM.pdf

Phylogenetic relationship of Frederiksenia canicola and other members of the family Pasteurellaceae based on Neighbor Joining tree of partial recN sequences. Escherichia coli was included as an outgroup to root the dendrogram. The clustering was supported by cophenetic correlation. The scale bar indicates sequence differences between the taxa. *Gene sequence ID, Oralgen www.oralgen.lanl.gov (PDF 81 kb)

Supplementary material 5 (PDF 58 kb)

Supplementary material 6 (PDF 61 kb)

Supplementary material 7 (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korczak, B.M., Bisgaard, M., Christensen, H. et al. Frederiksenia canicola gen. nov., sp. nov. isolated from dogs and human dog-bite wounds. Antonie van Leeuwenhoek 105, 731–741 (2014). https://doi.org/10.1007/s10482-014-0129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0129-0

Keywords

Navigation