Skip to main content

Advertisement

Log in

Subcellular localization determines the delicate balance between the anti- and pro-apoptotic activity of Livin

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Livin is a member of the Inhibitor of Apoptosis Protein family which inhibits apoptosis induced by a variety of stimuli. We previously identified Livin and demonstrated that following apoptotic stimuli, Livin is cleaved by effector caspases to produce a truncated form with paradoxical pro-apoptotic activity. In the present study, we reveal that while full-length Livin shows diffuse cytoplasmic localization, truncated Livin (tLivin) is found in a peri-nuclear distribution with marked localization to the Golgi apparatus. Using mutation analysis, we identified two domains that are crucial for the pro-apoptotic activity of tLivin: the N-terminal region of tLivin which is exposed by cleavage, and the RING domain. We demonstrate that, of the N-terminal sequence, only the first N-terminal glycine residue dictates the peri-nuclear distribution of tLivin. However, while the perinuclear localization of tLivin is essential, it is not sufficient for tLivin to exert its pro-apoptotic function. Once tLivin is properly localized, an intact RING domain enables its pro-apoptotic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IAP:

inhibitor of apoptosis

References

  1. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3:401–410

    Article  PubMed  CAS  Google Scholar 

  2. Borden KL (2000) RING domains: master builders of molecular scaffolds? J Mol Biol 295:1103–1112

    Article  PubMed  CAS  Google Scholar 

  3. Chai J, Shiozaki E, Srinivasula SM et al (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104:769–780

    Article  PubMed  CAS  Google Scholar 

  4. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104:781–790

    PubMed  CAS  Google Scholar 

  5. Riedl SJ, Renatus M, Schwarzenbacher R et al (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104:791–800

    Article  PubMed  CAS  Google Scholar 

  6. Hegde R, Srinivasula SM, Zhang Z et al (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438

    Article  PubMed  CAS  Google Scholar 

  7. Wright CW, Duckett CS (2005) Reawakening the cellular death program in neoplasia through the therapeutic blockade of IAP function. J Clin Invest 115:2673–2678

    Article  PubMed  CAS  Google Scholar 

  8. Nachmias B, Ashhab Y, Ben-Yehuda D (2004) The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol 14:231–243

    Article  PubMed  CAS  Google Scholar 

  9. Xiang Y, Yao H, Wang S et al (2006) Prognostic value of Survivin and Livin in nasopharyngeal carcinoma. Laryngoscope 116:126–130

    Article  PubMed  CAS  Google Scholar 

  10. Kim DK, Alvarado CS, Abramowsky CR et al (2005) Expression of inhibitor-of-apoptosis protein (IAP) livin by neuroblastoma cells: correlation with prognostic factors and outcome. Pediatr Dev Pathol 8:621–629

    Article  PubMed  CAS  Google Scholar 

  11. Tanabe H, Yagihashi A, Tsuji N, Shijubo Y, Abe S, Watanabe N (2004) Expression of survivin mRNA and livin mRNA in non-small-cell lung cancer. Lung Cancer 46:299–304

    Article  PubMed  Google Scholar 

  12. Nachmias B, Ashhab Y, Bucholtz V et al (2003) Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Res 63:6340–6349

    PubMed  CAS  Google Scholar 

  13. Ashhab Y, Alian A, Polliack A, Panet A, Ben Yehuda D (2001) Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett 495:56–60

    Article  PubMed  CAS  Google Scholar 

  14. Lin JH, Deng G, Huang Q, Morser J (2000) KIAP, a novel member of the inhibitor of apoptosis protein family. Biochem Biophys Res Commun 279:820–831

    Article  PubMed  CAS  Google Scholar 

  15. Kasof GM, Gomes BC (2001) Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 276:3238–3246

    Article  PubMed  CAS  Google Scholar 

  16. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM (2000) ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 10:1359–1366

    Article  PubMed  CAS  Google Scholar 

  17. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. Embo J 18:5242–5251

    Article  PubMed  CAS  Google Scholar 

  18. Johnson DE, Gastman BR, Wieckowski E et al (2000) Inhibitor of apoptosis protein hILP undergoes caspase-mediated cleavage during T lymphocyte apoptosis. Cancer Res 60:1818–1823

    PubMed  CAS  Google Scholar 

  19. Clem RJ, Sheu TT, Richter BW et al (2001) c-IAP1 is cleaved by caspases to produce a proapoptotic C-terminal fragment. J Biol Chem 276:7602–7608

    Article  PubMed  CAS  Google Scholar 

  20. Porgador A, Mandelboim O, Restifo NP, Strominger JL (1997) Natural killer cell lines kill autologous beta2-microglobulin-deficient melanoma cells: implications for cancer immunotherapy. Proc Natl Acad Sci USA 94:13140–13145

    Article  PubMed  CAS  Google Scholar 

  21. Mandelboim O, Reyburn HT, Vales-Gomez M et al (1996) Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J Exp Med 184:913–922

    Article  PubMed  CAS  Google Scholar 

  22. Yim H, Jin YH, Park BD, Choi HJ, Lee SK (2003) Caspase-3-mediated cleavage of Cdc6 induces nuclear localization of p49-truncated Cdc6 and apoptosis. Mol Biol Cell 14:4250–4259

    Article  PubMed  CAS  Google Scholar 

  23. Gleeson PA (1998) Targeting of proteins to the Golgi apparatus. Histochem Cell Biol 109:517–532

    Article  PubMed  CAS  Google Scholar 

  24. Munro S (1998) Localization of proteins to the Golgi apparatus. Trends Cell Biol 8:11–15

    Article  PubMed  CAS  Google Scholar 

  25. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  PubMed  CAS  Google Scholar 

  26. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ (2000) Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290:1761–1765

    Article  PubMed  CAS  Google Scholar 

  27. Utsumi T, Sakurai N, Nakano K, Ishisaka R (2003) C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage and targeted to mitochondria. FEBS Lett 539:37–44

    Article  PubMed  CAS  Google Scholar 

  28. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290–293

    Article  PubMed  CAS  Google Scholar 

  29. Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744:406–414

    Article  PubMed  CAS  Google Scholar 

  30. Mancini M, Machamer CE, Roy S et al (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149:603–612

    Article  PubMed  CAS  Google Scholar 

  31. Hauser HP, Bardroff M, Pyrowolakis G, Jentsch S (1998) A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J Cell Biol 141:1415–1422

    Article  PubMed  CAS  Google Scholar 

  32. Bartke T, Pohl C, Pyrowolakis G, Jentsch S (2004) Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol Cell 14:801–811

    Article  PubMed  CAS  Google Scholar 

  33. Plenchette S, Cathelin S, Rebe C et al (2004) Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event. Blood 104:2035–2043

    Article  PubMed  CAS  Google Scholar 

  34. Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83:1253–1262

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98:8662–8667

    Article  PubMed  CAS  Google Scholar 

  36. MacFarlane M, Merrison W, Bratton SB, Cohen GM (2002) Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277:36611–36616

    Article  PubMed  CAS  Google Scholar 

  37. Hu S, Yang X (2003) Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem 278:10055–10060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Rund for critical reading of the manuscript. We thank M Tharshis. This work was supported by the Caesarea Edmond Benjamin De Rothschild Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Ben-Yehuda.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachmias, B., Lazar, I., Elmalech, M. et al. Subcellular localization determines the delicate balance between the anti- and pro-apoptotic activity of Livin. Apoptosis 12, 1129–1142 (2007). https://doi.org/10.1007/s10495-006-0049-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0049-1

Keywords

Navigation