Skip to main content
Log in

Comparison of the rapid pro-apoptotic effect of trans-ß-nitrostyrenes with delayed apoptosis induced by the standard agent 5-fluorouracil in colon cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Trans-ß-nitrostyrene (TBNS) has been reported to be a potent inhibitor of protein phosphatases PTB1 and PP2A and to display a pro-apoptotic effect even in multidrug resistant tumour cells. Here we compared the anti-tumour potential of TBNS with 5-fluorouracil (5-FU) as the standard chemotherapeutic agent for colorectal cancer in LoVo cells. Resistance to 5-FU based therapy might be a consequence of 5-FU’s delayed effect requiring long-term effective concentrations in the tumour tissue. Thus, alternatives like platin containing drugs with a more rapid effect have been introduced recently.

Compared to 5-FU TBNS displayed a faster cytotoxic and pro-apoptotic effect. A 50% decrease in viability was observed already after 8 h with TBNS while 5-FU displayed no significant effect before 48 h. DNA fragmentation and caspase-3 assays confirmed the more rapid apoptotic effect of TBNS. Since apoptosis affects individual cells these results about a rapidly induced apoptosis were further studied on a single cell level in microscopic assays of caspase-3 and caspase-8 activation.

Adducts of trans-ß-nitrostyrene displayed an anti-tumour effect comparable to TBNS which suggests the possibility of creating adducts with optimised tissue targeting. Finally, the calculation of a drug combination index displayed a synergistic effect for the combination of TBNS and 5-FU in Lovo as well as in HT-29 and HCT116 colon cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart BW, Kleihues P (eds) (2003) World cancer report. IARC Press, Lyon, France

    Google Scholar 

  2. Van Cutsem E, Dicato M, Wils J et al (2002) Adjuvant treatment of colorectal cancer (current expert opinion derived from the third international conference: perspectives in colorectal cancer, Dublin, 2001). Eur J Cancer 38:1429–436

    Article  CAS  PubMed  Google Scholar 

  3. Goker E, Gorlick R, Bertino JR (1998) Resistance mechanisms to antimetabolites. In: Pinedo HM, Giaccone G (eds) Drug resistance in the treatment of cancer. Cambridge University Press, Cambridge, MA, USA, pp 1–3

    Google Scholar 

  4. Yoshimatsu K, Kato H, Ishibashi K et al (2003) Second-line chemotherapy with low-dose CPT-11 and cisplatin for colorectal cancer resistant to 5-FU-based chemotherapy. Cancer Chemother Pharmacol 52(6):465–68

    Article  CAS  PubMed  Google Scholar 

  5. Cazin JL, Gosselin P, Cappelaere P et al (1992) Drug resistance in oncology: from concepts to applications editorial. J Cancer Res Clin Oncol 119:76–6

    Article  CAS  PubMed  Google Scholar 

  6. Gorlick R, Banerjee D (2002) Fluoropyrimidine resistance in colon cancer. Expert Rev Anticancer Ther 2:409–16

    Article  CAS  PubMed  Google Scholar 

  7. Violette S, Poulain L, Dussaulx E et al (2002) Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 98:498–04

    Article  CAS  PubMed  Google Scholar 

  8. Kuranaga N, Shinomiya N, Mochizuki H (2001) Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study. BMC Cancer 1:10

    Article  CAS  PubMed  Google Scholar 

  9. Iqbal S, Lenz HJ (2001) Determinants of prognosis and response to therapy in colorectal cancer. Curr Oncol Rep 3:102–08

    Article  CAS  PubMed  Google Scholar 

  10. Rougier PH, Paillot B, LaPlanche A (1997) 5-Fluorouracil (5-FU) continuous intravenous infusion compared with bolus administration. Final results of a randomised trial in metastatic colorectal cancer. Eur J Cancer 33:1789–793

    Article  CAS  PubMed  Google Scholar 

  11. Pazdur R (1998) New agents for colorectal cancers: Oral fluorinated pyrimidines and oxaliplatin. In: Educational book, ASCO, 34th annual meeting, May 16–19. ASCO, Alexandria, Los Angeles, pp 301–10

  12. Raymond E, Faivre S, Chaney S, Woynarowski J, Cvitkovic E (2002) Cellular and molecular pharmacology of oxaliplatin. Mol Cancer Ther 1:227–35

    CAS  PubMed  Google Scholar 

  13. Arango D, Wilson AJ, Shi Q et al (2004) Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer 91:1931–946

    Article  CAS  PubMed  Google Scholar 

  14. Guichard S, Cussac D, Hennebelle I, Bugat R, Canal P (1997) Sequence-dependent activity of the irinotecan-5FU combination in human colon-cancer model HT-29 in vitro and in vivo. Int J Cancer 73:729–34

    Article  CAS  PubMed  Google Scholar 

  15. Xu JM, Azzariti A, Tommasi S et al (2002) Combination of 5-fluorouracil and irinotecan on modulation of thymidylate synthase and topoisomerase I expression and cell cycle regulation in human colon cancer LoVo cells: clinical relevance. Clin Colorectal Cancer 2:182–88

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt WM, Kalipciyan M, Dornstauder E et al (2004) Dissecting progressive stages of 5-fluorouracil resistance in vitro using RNA expression profiling. Int J Cancer 112:200–12

    Article  CAS  PubMed  Google Scholar 

  17. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–95

    Article  CAS  PubMed  Google Scholar 

  18. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–64

    Article  CAS  PubMed  Google Scholar 

  19. Arends MJ, Wyllie AH (1991) Apoptosis: mechanisms and roles in pathology. Int Rev Exp Path 32:223–54

    CAS  PubMed  Google Scholar 

  20. Cho SG, Choi EJ (2002) Apoptotic signalling pathways: caspases and stress-activated protein kinases. J Biochem Mol Biol. 35:24–7

    CAS  PubMed  Google Scholar 

  21. Chang HY, Yang X (2000) Proteases for cell suicide, functions and regulation of caspases. Microbiol Mol Biol Rev 64:821–46

    Article  CAS  PubMed  Google Scholar 

  22. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–32

    Article  CAS  PubMed  Google Scholar 

  23. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME (1998) Apoptosis signalling by death receptors. Eur J Biochem 254:439–59

    Article  CAS  PubMed  Google Scholar 

  24. Bratton SB, MacFarlane M, Cain K, Cohen GM (2000) Protein complexes activate distinct caspases cascades in death receptor and stress-induced apoptosis. Exp Cell Res 256:27–3

    Article  CAS  PubMed  Google Scholar 

  25. Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–966

    Article  CAS  PubMed  Google Scholar 

  26. Desagher S, Osen-Sand A, Nichols A et al (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–01

    Article  CAS  PubMed  Google Scholar 

  27. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–76

    Article  CAS  PubMed  Google Scholar 

  28. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–29

    Article  CAS  PubMed  Google Scholar 

  29. Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–360

    Article  PubMed  Google Scholar 

  30. Alonso A, Sasin J, Bottini N et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–11

    Article  CAS  PubMed  Google Scholar 

  31. Kato Y, Fusetani N, Matsunaga S, Hashimoto K (1988) Calyculins, potent antitumour metabolites from the marine sponge Discodermia calyx: biological activities. Drugs Exp Clin Res 14: 723–28

    CAS  PubMed  Google Scholar 

  32. Kiguchi K, Glesne D, Chubb CH, Fujiki H, Huberman E (1994) Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A. Cell Growth Differ 5:995–004

    CAS  PubMed  Google Scholar 

  33. von Zezschwitz C, Vorwerk H, Tergau F, Steinfelder HJ (1997) Apoptosis induction by inhibitors of Ser/Thr phosphatases 1 and 2A is associated with transglutaminase activation in two different human epithelial tumour lines. FEBS Lett 413:147–51

    Article  CAS  PubMed  Google Scholar 

  34. Chen YH, Chen JC, Yin SC et al (2002) Effector mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cell lines. Int J Cancer 100:158

    Article  CAS  PubMed  Google Scholar 

  35. Deng X, Ito T, Carr B, Mumby M, May WS (1998) Reversible phosphorylation of Bcl-2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A. J Biol Chem 273:34157

    Article  CAS  PubMed  Google Scholar 

  36. Haldar S, Jena N, Croce CM (1995) Inactivation of bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92:4507

    Article  CAS  PubMed  Google Scholar 

  37. Ruvolo PP, Deng XM, Ito T, Carr BK, May WS (1999) Ceramide induces Bcl-2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 274:20296

    Article  CAS  PubMed  Google Scholar 

  38. Santoro MF, Annand RR, Robertson MM et al (1998) Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis. J Biol Chem 273:13119–3128

    Article  CAS  PubMed  Google Scholar 

  39. Li YM, Casida JE (1992) Cantharidin-binding protein: identification as protein phosphatase 2A. Proc Natl Acad Sci USA 89:11867–1870

    Article  CAS  PubMed  Google Scholar 

  40. Hart ME, Chamberlin AR, Walkom C, Sakoff JA, McCluskey A (2004) Modified norcantharidins; synthesis, protein phosphatases 1 and 2A inhibition, and anticancer activity. Bioorg Med Chem Lett. 14:1969–973

    Article  CAS  PubMed  Google Scholar 

  41. Peng F, Wei YQ, Tian L et al (2002) Induction of apoptosis by norcantharidin in human colorectal carcinoma cell lines: involvement of the CD95 receptor/ligand. J Cancer Res Clin Oncol 128:223–30

    Article  CAS  PubMed  Google Scholar 

  42. McCluskey A, Ackland SP, Gardiner E, Walkom CC, Sakoff JA (2001) The inhibition of protein phosphatases 1 and 2A: a new target for rational anti-cancer drug design? Anticancer Drug Des 16:291–03

    CAS  PubMed  Google Scholar 

  43. Sakoff JA, Ackland SP, Baldwin ML, Keane MA, McCluskey A (2002) Anticancer activity and protein phosphatase 1 and 2A inhibition of a new generation of cantharidin analogues. Invest New Drugs 20:1–1

    Article  CAS  PubMed  Google Scholar 

  44. Park J, Pei D (2004) Trans-B-Nitrostyrene Derivates as slow-binding inhibitors of protein tyrosine phosphatases. Biochemistry 43:15014–5021

    Article  CAS  PubMed  Google Scholar 

  45. Fathi AR, Krautheim A, Kaap S, Eger K, Steinfelder HJ (2000) Michael adducts of ascorbic acid as inhibitors of protein phosphatase 2A and inducers of apoptosis. Bioorg Med Chem Lett 10:1605–608

    Article  CAS  PubMed  Google Scholar 

  46. Kaap S, Quentin I, Tamiru D, Shaheen M, Eger K, Steinfelder HJ (2003) Structure activity of the pro-apoptotic, anti-tumour effect of nitrostyrene adducts and related compounds. Biochem Pharmacol 65:603–10

    Article  CAS  PubMed  Google Scholar 

  47. Drewinko B, Romsdahl MM, Yang LY, Ahearn MJ, Drujillo JM (1976) Establishment of a human carcinoembryonic antigen-producing colon adenocarcinoma cell line. Cancer Res 36:467–75

    CAS  PubMed  Google Scholar 

  48. Steinfelder HJ, Hauser P, Nakayama Y et al (1988) Thyrotropin H-releasing hormone regulation of human TSH· expression: role of pituitary-specific transcription factor (Pit/GHF-1) and potential interaction with a thyroid hormone-inhibitory element. Proc Acad Sci USA 88:3130–133

    Article  Google Scholar 

  49. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–3

    Article  CAS  PubMed  Google Scholar 

  50. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–5

    Article  CAS  PubMed  Google Scholar 

  51. Rustenbeck I, Krautheim A, Jörns A, Steinfelder HJ (2004) ß-Cell toxicity of ATP-sensitive K+ channel-blocking insulin secretagogues. Biochem Pharmacol 67:1733–741

    Article  CAS  PubMed  Google Scholar 

  52. Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis. The role of the endonuclease. Am J Pathol 136:593–98

    CAS  PubMed  Google Scholar 

  53. GLOBOCAN 2000 (2001) cancer incidence, mortality and prevalence worldwide, version 1.0. IARC CancerBase no. 5. Lyon. IARC Press, France

  54. Andre T, Boni C, Mounedji-Boudiaf L et al (2004) Multicenter international study of Oxaliplatin/5-Fluorouracil/Leucovorin in the adjuvant treatment of colon cancer (MOSAIC) investigators: Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350:2343–351

    Article  CAS  PubMed  Google Scholar 

  55. Twelves C, Wong A, Nowacki MP et al (2005) Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 352:2696–704

    Article  CAS  PubMed  Google Scholar 

  56. Milhazes N, Calheiros R, Marques MP et al (2006) Beta-nitrostyrene derivatives as potential antibacterial agents: a structure-property-activity relationship study. Bioorg Med Chem. 14:4078–088

    Article  CAS  PubMed  Google Scholar 

  57. Tokunaga E, Oda S, Fukushima M, Maehara Y, Sugimachi K (2000) Differential growth inhibition by 5-fluorouracil in human colorectal carcinoma cell lines. Eur J Cancer 36: 1998–006

    Article  CAS  PubMed  Google Scholar 

  58. Chen XX, Lai MD, Zhang YL, Huang Q (2002) Less cytotoxity to combination of 5-fluorouracil and cisplatin than 5-fluorouracil alone in human colon cancer cell lines. World J Gastroenterol 8:841–46

    CAS  PubMed  Google Scholar 

  59. Honkanen RE (1993) Cantharidin, another natural toxin that inhibits the activity of serin/threonine protein phosphatases types 1 and 2A. FEBS Lett 330:283–86

    Article  CAS  PubMed  Google Scholar 

  60. Laidley CW, Cohen E, Casida JE (1997) Protein phosphatases in neuroblastoma cells: [3H]cantharidin binding site in relation to cytotoxicity. J Pharmacol Exp Ther 280:1152–158

    CAS  PubMed  Google Scholar 

  61. Sieder S, Richter E, Becker K, Heins R, Steinfelder HJ (1999) Doxorubicin-resistant LoVo adenocarcinoma cells display resistance to apoptosis induction by some but not all inhibitors of ser/thr phosphatases 1 and 2A. Toxicology 134:109–15

    Article  CAS  PubMed  Google Scholar 

  62. Adachi Y, Taketani S, Oyaizu H, Ikebukuro K, Tokunaga R, Ikehara S (1999) Apoptosis of colorectal adenocarcinoma induced by 5-FU and/or IFN-gamma through caspase 3 and caspase 8. Int J Oncol 15:1191–196

    CAS  PubMed  Google Scholar 

  63. Backus HH, Wouters D, Ferreira CG et al (2003) Thymidylate synthase inhibition triggers apoptosis via caspases-8 and -9 in both wild-type and mutant p53 colon cancer cell lines. Eur J Cancer 39:1310–317

    Article  CAS  PubMed  Google Scholar 

  64. Wang K, Yian XM, Chao DT, Milliman CL, Korsmeyer SJ (1996) BID: A novel BH3 domain only death agonist. Genes Dev 10:2859–869

    Article  CAS  PubMed  Google Scholar 

  65. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–136

    Article  CAS  PubMed  Google Scholar 

  66. Huh JE, Kang KS, Chae C et al (2004) Roles of p38 and JNK mitogen-activated protein kinase pathways during cantharidin-induced apoptosis in U937 cells. Biochem Pharmacol 67:1811–818

    Article  CAS  PubMed  Google Scholar 

  67. Kaap S, Brechlin P, Quentin I, Eger K, Steinfelder HJ (2004) Apoptosis by 6-O-palmitoyl-L-ascorbic acid coincides with JNK-phosphorylation and inhibition of Mg2+ dependent phosphatase activity. Biochem Pharmacol 67:919–26

    Article  CAS  PubMed  Google Scholar 

  68. Guo YL, Baysal K, Kang B, Yang LJ, Williamson JR (1998) Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-a in rat mesangial cells. J Biol Chem 273:4027–034

    Article  CAS  PubMed  Google Scholar 

  69. Schroeter H, Boyd CS, Ahmed R et al (2003) c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis. Biochem J 372:359–69

    Article  CAS  PubMed  Google Scholar 

  70. Kitada S, Zapata JK, Andreeff M, Reed JC (2000) Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukaemia. Blood 96:393–97

    CAS  PubMed  Google Scholar 

  71. Arnould S, Hennebelle I, Canal P, Bugat R, Guichard S (2003) Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. Eur J Cancer 39:112–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Jürgen Steinfelder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, J., Eger, K. & Jürgen Steinfelder, H. Comparison of the rapid pro-apoptotic effect of trans-ß-nitrostyrenes with delayed apoptosis induced by the standard agent 5-fluorouracil in colon cancer cells. Apoptosis 12, 235–246 (2007). https://doi.org/10.1007/s10495-006-0530-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0530-x

Keywords

Navigation