Skip to main content
Log in

N-acetyl cysteine enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Introduction

Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy.

Materials and methods

Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl+ cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl+ CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl+ cells.

Conclusion

NAC enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NAC:

N-acetyl cysteine

CML:

Chronic myeloid leukemia

NO:

Nitric oxide

NOS:

Nitric oxide synthase

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037. doi:10.1056/NEJM200104053441401

    Article  PubMed  CAS  Google Scholar 

  2. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004. doi:10.1056/NEJMoa022457

    Article  PubMed  CAS  Google Scholar 

  3. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T et al (2000) The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 275:24273–24278. doi:10.1074/jbc.M002094200

    Article  PubMed  CAS  Google Scholar 

  4. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M et al (2006) BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 108:319–327. doi:10.1182/blood-2005-07-2815

    Article  PubMed  CAS  Google Scholar 

  5. Sun X, Majumder P, Shioya H, Wu F, Kumar S, Weichselbaum R et al (2000) Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. J Biol Chem 275:17237–17240. doi:10.1074/jbc.C000099200

    Article  PubMed  CAS  Google Scholar 

  6. Kumar S, Mishra N, Raina D, Saxena S, Kufe D (2003) Abrogation of the cell death response to oxidative stress by the c-Abl tyrosine kinase inhibitor STI571. Mol Pharmacol 63:276–282. doi:10.1124/mol.63.2.276

    Article  PubMed  CAS  Google Scholar 

  7. Storozhevykh TP, Senilova YE, Persiyantseva NA, Pinelis VG, Pomytkin IA (2007) Mitochondrial respiratory chain is involved in insulin-stimulated hydrogen peroxide production and plays an integral role in insulin receptor autophosphorylation in neurons. BMC Neurosci 8:84–90. doi:10.1186/1471-2202-8-84

    Article  PubMed  CAS  Google Scholar 

  8. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    PubMed  CAS  Google Scholar 

  9. Kishi K (1985) A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors. Leuk Res 9:381–390. doi:10.1016/0145-2126(85)90060-8

    Article  PubMed  CAS  Google Scholar 

  10. Kubonishi I, Miyoshi I (1983) Establishment of a Ph1 chromosome-positive cell line from chronic myelogenous leukemia in blast crisis. Int J Cell Cloning 1:105–117

    Article  PubMed  CAS  Google Scholar 

  11. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101:690–698. doi:10.1182/blood.V101.2.690

    Article  PubMed  CAS  Google Scholar 

  12. Bandyopadhyay G, Biswas T, Roy KC, Mandal S, Mandal C, Pal BC et al (2004) Chlorogenic acid inhibits Bcr-Abl tyrosine kinase and triggers p38 mitogen-activated protein kinase-dependent apoptosis in chronic myelogenous leukemic cells. Blood 104:2514–2522. doi:10.1182/blood-2003-11-4065

    Article  PubMed  CAS  Google Scholar 

  13. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241–252. doi:10.1016/j.ccr.2006.08.009

    Article  PubMed  CAS  Google Scholar 

  14. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305. doi:10.1038/38525

    Article  PubMed  CAS  Google Scholar 

  15. Bortner CD, Cidlowski JA (1999) Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953–21962. doi:10.1074/jbc.274.31.21953

    Article  PubMed  CAS  Google Scholar 

  16. Roy KC, Bandyopadhyay G, Rakshit S, Ray M, Bandyopadhyay S (2004) IL-4 alone without the involvement of GM-CSF transforms human peripheral blood monocytes to a CD1a(dim), CD83(+) myeloid dendritic cell subset. J Cell Sci 117:3435–3445. doi:10.1242/jcs.01162

    Article  PubMed  CAS  Google Scholar 

  17. Gilchrist M, McCauley SD, Befus AD (2004) Expression, localization, and regulation of NOS in human mast cell lines: effects on leukotriene production. Blood 104:462–469. doi:10.1182/blood-2003-08-2990

    Article  PubMed  CAS  Google Scholar 

  18. Xia Z, Liu M, Wu Y, Sharma V, Luo T, Ouyang J et al (2006) N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression. Eur J Pharmacol 550:134–142. doi:10.1016/j.ejphar.2006.08.044

    Article  PubMed  CAS  Google Scholar 

  19. Shen HM, Liu Z (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939. doi:10.1016/j.freeradbiomed.2005.10.056

    Article  PubMed  CAS  Google Scholar 

  20. Corbett JA, McDaniel ML (1996) The use of aminoguanidine, a selective iNOS inhibitor, to evaluate the role of nitric oxide in the development of autoimmune diabetes. Methods 10:21–30. doi:10.1006/meth.1996.0074

    Article  PubMed  CAS  Google Scholar 

  21. Belik J, Jankov RP, Pan J, Tanswell AK (2004) Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat. Free Radic Biol Med 37:1384–1392. doi:10.1016/j.freeradbiomed.2004.07.029

    Article  PubMed  CAS  Google Scholar 

  22. Stricklett PK, Hughes AK, Kohan DE (2006) Endothelin-1 stimulates NO production and inhibits cAMP accumulation in rat inner medullary collecting duct through independent pathways. Am J Physiol Ren Physiol 290:1315–1319. doi:10.1152/ajprenal.00450.2005

    Article  CAS  Google Scholar 

  23. Pei DS, Song YJ, Yu HM, Hu WW, Du Y, Zhang GY (2008) Exogenous nitric oxide negatively regulates c-Jun N-terminal kinase activation via inhibiting endogenous NO-induced S-nitrosylation during cerebral ischemia and reperfusion in rat hippocampus. J Neurochem 106(4):1952–1963. doi:10.1111/j.1471-4159.2008.05531.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Anirban Manna for preparation of the manuscript and Dr. Carlo Gambacorti Passerini for providing KU812 and KCL22 cell lines. The present study was supported by the Council of Scientific and Industrial Research (CSIR), Department of Biotechnology (DBT), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santu Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakshit, S., Bagchi, J., Mandal, L. et al. N-acetyl cysteine enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide. Apoptosis 14, 298–308 (2009). https://doi.org/10.1007/s10495-008-0305-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0305-7

Keywords

Navigation