Skip to main content
Log in

Inhibition of MEK/ERK signaling induces apoptosis of acute myelogenous leukemia cells via inhibition of eukaryotic initiation factor 4E-binding protein 1 and down-regulation of Mcl-1

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We previously showed that the MEK inhibitor AZD6244 induced apoptosis in acute myelogenous leukemia (AML) HL60 cells. However, the mechanisms of AZD6244 to induce apoptosis remain to be fully elucidated. This study found that exposure of HL60 cells to AZD6244 down-regulated the levels of phosphor (p)-4E-binding protein 1 (4E-BP1), a substrate of mammalian target of rapamycin complex 1 (mTORC1), and anti-apoptotic protein Mcl-1. On the other hand, exposure of EOL-1 and MOLM13 cells to AZD6244 failed to induce apoptosis and levels of p-4E-BP1 and Mcl-1 were not down-regulated in these cells. These observations prompted us to hypothesize that down-regulation od 4E-BP1 and Mcl-1 might play an important role in AZD6244-mediated apoptosis. As expected, down-regulation of 4E-BP1 by an siRNA sensitized EOL-1 cells to AZD6244-mediated apoptosis in parallel with down-regulation of Mcl-1. Moreover, we found that blockade of mTORC1 by RAD001 synergistically enhanced the action of AZD6244 in leukemia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AML:

Acute myelogenous leukemia

MEK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated kinase

PI3K:

Phosphoinositide-3 kinase

mTOR:

Mammalian target of rapamycin

PBMCs:

Peripheral blood mononuclear cells

4E-BP1:

Eukaryotic initiation factor 4E-binding protein 1

FACS:

Flow cyctometry

References

  1. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S (2006) Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107:3847–3853

    Article  CAS  PubMed  Google Scholar 

  2. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M, Estrov Z, Mills GB, Andreeff M (2004) Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18:267–275

    Article  CAS  PubMed  Google Scholar 

  3. Gregorj C, Ricciardi MR, Petrucci MT, Scerpa MC, De Cave F, Fazi P, Vignetti M, Vitale A, Mancini M, Cimino G, Palmieri S, Di Raimondo F, Specchia G, Fabbiano F, Cantore N, Mosna F, Camera A, Luppi M, Annino L, Miraglia E, Fioritoni G, Ronco F, Meloni G, Mandelli F, Andreeff M, Milella M, Foà R, Tafuri A, GIMEMA Acute Leukemia Working Party (2007) ERK1/2 phosphorylation is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia. Blood 109:5473–5476

    Article  CAS  PubMed  Google Scholar 

  4. Milella M, Konopleva M, Precupanu CM, Tabe Y, Ricciardi MR, Gregorj C, Collins SJ, Carter BZ, D’Angelo C, Petrucci MT, Foà R, Cognetti F, Tafuri A, Andreeff M (2007) MEK blockade converts AML differentiating response to retinoids into extensive apoptosis. Blood 109:2121–2129

    Article  CAS  PubMed  Google Scholar 

  5. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E, Andreeff M (2001) Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 108:851–859

    CAS  PubMed  Google Scholar 

  6. Staber PB, Linkesch W, Zauner D, Beham-Schmid C, Guelly C, Schauer S, Sill H, Hoefler G (2004) Common alterations in gene expression and increased proliferation in recurrent acute myeloid leukemia. Oncogene 23:894–904

    Article  CAS  PubMed  Google Scholar 

  7. Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M, Estey EH, Andreeff M (2006) Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 108:2358–2365

    Article  CAS  PubMed  Google Scholar 

  8. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Bäsecke J, Libra M, Stivala F, Milella M, Tafuri A, Lunghi P, Bonati A, Martelli AM, McCubrey JA (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22:686–707

    Article  CAS  PubMed  Google Scholar 

  9. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, Parry J, Smith D, Brandhuber BJ, Gross S, Marlow A, Hurley B, Lyssikatos J, Lee PA, Winkler JD, Koch K, Wallace E (2007) Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 13:1576–1583

    Article  CAS  PubMed  Google Scholar 

  10. Tai YT, Fulciniti M, Hideshima T, Song W, Leiba M, Li XF, Rumizen M, Burger P, Morrison A, Podar K, Chauhan D, Tassone P, Richardson P, Munshi NC, Ghobrial IM, Anderson KC (2007) Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood 110:1656–1663

    Article  CAS  PubMed  Google Scholar 

  11. Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN, Adjei AA (2008) BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res 68:6145–6153

    Article  CAS  PubMed  Google Scholar 

  12. Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A (2008) Inhibition of MEK/ERK signaling synergistically potentiates histone deacetylase inhibitor-induced growth arrest, apoptosis and acetylation of histone H3 on p21waf1 promoter in acute myelogenous leukemia cell. Leukemia 22:1449–1452

    Article  CAS  PubMed  Google Scholar 

  13. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  14. Schmelzle T, Hall MN (2000) mTOR, a central controller of cell growth. Cell 103:253–262

    Article  CAS  PubMed  Google Scholar 

  15. Brown EJ, Schreiber SL (1996) A signaling pathway to translational control. Cell 86:517–520

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Beugnet A, Murakami M, Yamanaka S, Proud CG (2005) Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 25:2558–2572

    Article  CAS  PubMed  Google Scholar 

  17. Castellvi J, Garcia A, Rojo F, Ruiz-Marcellan C, Gil A, Baselga J, Ramon y Cajal S (2006) Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer 107:1801–1811

    Article  CAS  PubMed  Google Scholar 

  18. Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS (2005) Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 280:38879–38887

    Article  CAS  PubMed  Google Scholar 

  19. Oudard S, Medioni J, Aylllon J, Barrascourt E, Elaidi RT, Balcaceres J, Scotte F (2009) Everolimus (RAD001): an mTOR inhibitor for the treatment of metastatic renal cell carcinoma. Expert Rev Anticancer Ther 9:705–717

    Article  CAS  PubMed  Google Scholar 

  20. Ikezoe T, Nishioka C, Tasaka T, Yang Y, Komatsu N, Togitani K, Koeffler HP, Taguchi H (2006) The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol Cancer Ther 5:2522–2530

    Article  CAS  PubMed  Google Scholar 

  21. Nishioka C, Ikezoe T, Yang J, Koeffler HP, Taguchi H (2007) Fludarabine induces apoptosis of human T-cell leukemia virus type 1-infected T cells via inhibition of the nuclear factor-kappaB signal pathway. Leukemia 21:1044–1049

    Article  CAS  PubMed  Google Scholar 

  22. Ikezoe T, Bandobashi K, Yang Y, Takeuchi S, Sekiguchi N, Sakai S, Koeffler HP, Taguchi H (2006) HIV-1 protease inhibitor ritonavir potentiates the effect of 1, 25-dihydroxyvitamin D3 to induce growth arrest and differentiation of human myeloid leukemia cells via down-regulation of CYP24. Leuk Res 30:1005–1011

    Article  CAS  PubMed  Google Scholar 

  23. Nishioka C, Ikezoe T, Takeshita A, Yang J, Tasaka T, Yang Y, Kuwayama Y, Komatsu N, Togitani K, Koeffler HP, Taguchi H (2007) ZD6474 induces growth arrest and apoptosis of human leukemia cells, which is enhanced by concomitant use of a novel MEK inhibitor, AZD6244. Leukemia 21:1308–1310

    Article  CAS  PubMed  Google Scholar 

  24. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  25. Wergeland L, Sjøholt G, Haaland I, Hovland R, Bruserud Ø, Gjertsen BT (2007) Pre-apoptotic response to therapeutic DNA damage involves protein modulation of Mcl-1, Hdm2 and Flt3 in acute myeloid leukemia cells. Mol Cancer 6:33

    Article  PubMed  Google Scholar 

  26. Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD, Reed JC (1998) Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 91:991–1000

    CAS  PubMed  Google Scholar 

  27. Bos JL, Verlaan-de Vries M, Jansen AM, Veeneman GH, van Boom JH, van der Eb AJ (1984) Three different mutations in codon 61 of the human N-ras gene detected by synthetic oligonucleotide hybridization. Nucleic Acids Res 12:9155–9163

    Article  CAS  PubMed  Google Scholar 

  28. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Ouyang X, Gerald WL, Cordon-Cardo C, Abate-Shen C (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118:3051–3064

    CAS  PubMed  Google Scholar 

  29. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, García-Echeverría C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in-Aid from the Ministry of Education, Culture Sports, Science, and Technology of Japan (to T.I), The Kochi University President’s Discretionary Grant (to T.I), Takeda Science Foundation (to T.I), AstraZeneca Research Grant 2008 (to T.I), and Sagawa Foundation for Promotion of Cancer Research (to T.I). C.N. is grateful for a JSPS Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Ikezoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishioka, C., Ikezoe, T., Yang, J. et al. Inhibition of MEK/ERK signaling induces apoptosis of acute myelogenous leukemia cells via inhibition of eukaryotic initiation factor 4E-binding protein 1 and down-regulation of Mcl-1. Apoptosis 15, 795–804 (2010). https://doi.org/10.1007/s10495-010-0483-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0483-y

Keywords

Navigation