Skip to main content
Log in

p53-dependent regulation of Mcl-1 contributes to synergistic cell death by ionizing radiation and the Bcl-2/Bcl-XL inhibitor ABT-737

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Treatment with the Bcl-2/Bcl-XL inhibitor ABT-737 is a promising novel strategy to therapeutically induce apoptotic cell death in malignant tumors such as glioblastomas. Although many studies have demonstrated that ABT-737 acts synergistically with chemotherapeutic drugs, the possibility of a combined treatment with ionizing radiation (IR) and ABT-737 has not yet been thoroughly investigated. Similarly, the relationship between p53 function and the pro-apoptotic effects of ABT-737 are still obscure. Here, we demonstrate that IR and ABT-737 synergistically induce apoptosis in glioblastoma cells. The sensitivity to ABT-737-mediated cell death is significantly increased by the IR-dependent accumulation of cells in the G2/M cell cycle phase. Wild type p53 function inhibits the efficacy of a combined IR and ABT-737 treatment via a p21-dependent G1 cell cycle arrest. Moreover, mutant as well as wild type p53 counteract the pro-apoptotic activity of ABT-737 by maintaining the expression levels of the Mcl-1 protein. Thus, p53 regulates the sensitivity to ABT-737 of glioblastoma cells. Our results warrant a further evaluation of a novel combination therapy using IR and ABT-737. The efficacy of such a therapy could be substantially enhanced by Mcl-1-lowering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IR:

Ionizing radiation

References

  1. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681. doi:10.1038/nature03579

    Article  PubMed  CAS  Google Scholar 

  2. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A (2007) Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 117(1):112–121

    Article  PubMed  CAS  Google Scholar 

  3. Okumura K, Huang S, Sinicrope FA (2008) Induction of Noxa sensitizes human colorectal cancer cells expressing Mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737. Clin Cancer Res 14(24):8132–8142. doi:10.1158/1078-0432.CCR-08-1665

    Article  PubMed  CAS  Google Scholar 

  4. Vogler M, Dinsdale D, Dyer MJ, Cohen GM (2009) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16(3):360–367. doi:10.1038/cdd.2008.137

    Article  PubMed  CAS  Google Scholar 

  5. Labi V, Grespi F, Baumgartner F, Villunger A (2008) Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ 15(6):977–987. doi:10.1038/cdd.2008.37

    Article  PubMed  CAS  Google Scholar 

  6. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68(9):3421–3428. doi:10.1158/0008-5472.CAN-07-5836

    Article  PubMed  CAS  Google Scholar 

  7. Park CM, Bruncko M, Adickes J, Bauch J, Ding H, Kunzer A et al (2008) Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51(21):6902–6915. doi:10.1021/jm800669s

    Article  PubMed  CAS  Google Scholar 

  8. Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Bock BC et al (2008) Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27(52):6646–6656. doi:10.1038/onc.2008.259

    Article  PubMed  CAS  Google Scholar 

  9. Chen S, Dai Y, Pei XY, Grant S (2009) Bim upregulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-xL, and Mcl-1. Mol Cell Biol 29(23):6149–6169. doi:10.1128/MCB.01481-08

    Article  PubMed  CAS  Google Scholar 

  10. Mason KD, Khaw SL, Rayeroux KC, Chew E, Lee EF, Fairlie WD et al (2009) The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia 23(11):2034–2041. doi:10.1038/leu.2009.151

    Article  PubMed  CAS  Google Scholar 

  11. Zall H, Weber A, Besch R, Zantl N, Hacker G (2010) Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the Noxa-dependent inactivation of Mcl-1 or A1. Mol Cancer 9:164. doi:10.1186/1476-4598-9-164

    PubMed  Google Scholar 

  12. Cragg MS, Harris C, Strasser A, Scott CL (2009) Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 9(5):321–326. doi:10.1038/nrc2615

    Article  PubMed  CAS  Google Scholar 

  13. Morales AA, Gutman D, Lee KP, Boise LH (2008) BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood 111(10):5152–5162. doi:10.1182/blood-2007-10-116889

    Article  PubMed  CAS  Google Scholar 

  14. Miller LA, Goldstein NB, Johannes WU, Walton CH, Fujita M, Norris DA et al (2009) BH3 mimetic ABT-737 and a proteasome inhibitor synergistically kill melanomas through Noxa-dependent apoptosis. J Invest Dermatol 129(4):964–971. doi:10.1038/jid.2008.327

    Article  PubMed  CAS  Google Scholar 

  15. Yecies D, Carlson NE, Deng J, Letai A (2010) Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 115(16):3304–3313. doi:10.1182/blood-2009-07-233304

    Article  PubMed  CAS  Google Scholar 

  16. Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP (2008) Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst 100(8):580–595

    Article  PubMed  CAS  Google Scholar 

  17. Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG et al (2008) Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 22(4):808–818. doi:10.1038/sj.leu.2405098

    Article  PubMed  CAS  Google Scholar 

  18. Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19(5):488–496. doi:10.1016/j.coi.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  19. Kojima K, Konopleva M, Samudio IJ, Schober WD, Bornmann WG, Andreeff M (2006) Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle 5(23):2778–2786

    Article  PubMed  CAS  Google Scholar 

  20. Schmitt M, Pawlita M (2009) High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Res 37(18):e119. doi:10.1093/nar/gkp581

    Article  PubMed  Google Scholar 

  21. Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE et al (1994) Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 54(3):649–652

    PubMed  Google Scholar 

  22. Bivik C, Ollinger K (2008) JNK mediates UVB-induced apoptosis upstream lysosomal membrane permeabilization and Bcl-2 family proteins. Apoptosis 13(9):1111–1120. doi:10.1007/s10495-008-0240-7

    Article  PubMed  CAS  Google Scholar 

  23. Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F et al (2003) Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17(12):1475–1486. doi:10.1101/gad.1093903

    Article  PubMed  CAS  Google Scholar 

  24. Kubota Y, Kinoshita K, Suetomi K, Fujimori A, Takahashi S (2007) Mcl-1 depletion in apoptosis elicited by ionizing radiation in peritoneal resident macrophages of C3H mice. J Immunol 178(5):2923–2931

    PubMed  CAS  Google Scholar 

  25. Tichy A, Zaskodova D, Pejchal J, Rezacova M, Osterreicher J, Vavrova J et al (2008) Gamma irradiation of human leukaemic cells HL-60 and MOLT-4 induces decrease in Mcl-1 and Bid, release of cytochrome c, and activation of caspase-8 and caspase-9. Int J Radiat Biol 84(6):523–530. doi:10.1080/09553000802078404

    Article  PubMed  CAS  Google Scholar 

  26. Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17(6):617–625. doi:10.1016/j.ceb.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  27. Vesely J, Havlicek L, Strnad M, Blow JJ, Donella-Deana A, Pinna L et al (1994) Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem 224(2):771–786

    Article  PubMed  CAS  Google Scholar 

  28. Chaturvedi V, Sitailo LA, Qin JZ, Bodner B, Denning MF, Curry J et al (2005) Knockdown of p53 levels in human keratinocytes accelerates Mcl-1 and Bcl-x(L) reduction thereby enhancing UV-light induced apoptosis. Oncogene 24(34):5299–5312. doi:10.1038/sj.onc.1208650

    Article  PubMed  CAS  Google Scholar 

  29. Batista LF, Roos WP, Christmann M, Menck CF, Kaina B (2007) Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res 67(24):11886–11895. doi:10.1158/0008-5472.CAN-07-2964

    Article  PubMed  CAS  Google Scholar 

  30. Biroccio A, Bufalo DD, Ricca A, D’Angelo C, D’Orazi G, Sacchi A et al (1999) Increase of BCNU sensitivity by wt-p53 gene therapy in glioblastoma lines depends on the administration schedule. Gene Ther 6(6):1064–1072. doi:10.1038/sj.gt.3300935

    Article  PubMed  CAS  Google Scholar 

  31. Broaddus WC, Liu Y, Steele LL, Gillies GT, Lin PS, Loudon WG et al (1999) Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J Neurosurg 91(6):997–1004. doi:10.3171/jns.1999.91.6.0997

    Article  PubMed  CAS  Google Scholar 

  32. Wade M, Rodewald LW, Espinosa JM, Wahl GM (2008) BH3 activation blocks Hdmx suppression of apoptosis and cooperates with Nutlin to induce cell death. Cell Cycle 7(13):1973–1982

    Article  PubMed  CAS  Google Scholar 

  33. Reiners JJ Jr, Kessel D (2005) Susceptibility of myelomonocytic leukemia U937 cells to the induction of apoptosis by the non-peptidic Bcl-2 ligand HA14–1 is cell cycle phase-dependent. Cancer Lett 221(2):153–163. doi:10.1016/j.canlet.2004.09.012

    Article  PubMed  CAS  Google Scholar 

  34. Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280(20):20059–20068. doi:10.1074/jbc.M410670200

    Article  PubMed  CAS  Google Scholar 

  35. Shu CH, Yang WK, Shih YL, Kuo ML, Huang TS (1997) Cell cycle G2/M arrest and activation of cyclin-dependent kinases associated with low-dose paclitaxel-induced sub-G1 apoptosis. Apoptosis 2(5):463–470

    Article  PubMed  CAS  Google Scholar 

  36. Carter BZ, Mak DH, Woessner R, Gross S, Schober WD, Estrov Z et al (2009) Inhibition of KSP by ARRY-520 induces cell cycle block and cell death via the mitochondrial pathway in AML cells. Leukemia 23(10):1755–1762. doi:10.1038/leu.2009.101

    Article  PubMed  CAS  Google Scholar 

  37. Blagosklonny MV (2007) Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6(1):70–74

    Article  PubMed  CAS  Google Scholar 

  38. Singh R, George J, Shukla Y (2010) Role of senescence and mitotic catastrophe in cancer therapy. Cell Div 5:4. doi:10.1186/1747-1028-5-4

    Article  PubMed  Google Scholar 

  39. Quick QA, Gewirtz DA (2006) An accelerated senescence response to radiation in wild-type p53 glioblastoma multiforme cells. J Neurosurg 105(1):111–118. doi:10.3171/jns.2006.105.1.111

    Article  PubMed  CAS  Google Scholar 

  40. Pollack IF, Hamilton RL, Finkelstein SD, Campbell JW, Martinez AJ, Sherwin RN et al (1997) The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Res 57(2):304–309

    PubMed  CAS  Google Scholar 

  41. Rich JN, Hans C, Jones B, Iversen ES, McLendon RE, Rasheed BK et al (2005) Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res 65(10):4051–4058. doi:10.1158/0008-5472.CAN-04-3936

    Article  PubMed  CAS  Google Scholar 

  42. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27(34):5743–5750. doi:10.1200/JCO.2009.23.0805

    Article  PubMed  CAS  Google Scholar 

  43. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF (1999) The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 19(9):6195–6206

    PubMed  CAS  Google Scholar 

  44. Giebler HA, Lemasson I, Nyborg JK (2000) p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation. Mol Cell Biol 20(13):4849–4858

    Article  PubMed  CAS  Google Scholar 

  45. Pietrzak M, Puzianowska-Kuznicka M (2008) p53-dependent repression of the human MCL-1 gene encoding an anti-apoptotic member of the BCL-2 family: the role of Sp1 and of basic transcription factor binding sites in the MCL-1 promoter. Biol Chem 389(4):383–393. doi:10.1515/BC.2008.039

    Article  PubMed  CAS  Google Scholar 

  46. Thomas LW, Lam C, Edwards SW (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett 584(14):2981–2989. doi:10.1016/j.febslet.2010.05.061

    Article  PubMed  CAS  Google Scholar 

  47. Akgul C (2009) Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 66(8):1326–1336. doi:10.1007/s00018-008-8637-6

    Article  PubMed  CAS  Google Scholar 

  48. Lin J, Tang H, Jin X, Jia G, Hsieh JT (2002) p53 regulates Stat3 phosphorylation and DNA binding activity in human prostate cancer cells expressing constitutively active Stat3. Oncogene 21(19):3082–3088. doi:10.1038/sj.onc.1205426

    Article  PubMed  CAS  Google Scholar 

  49. Fritsche M, Mundt M, Merkle C, Jahne R, Groner B (1998) p53 suppresses cytokine induced, Stat5 mediated activation of transcription. Mol Cell Endocrinol 143(1–2):143–154

    Article  PubMed  CAS  Google Scholar 

  50. Sermeus A, Michiels C (2011) Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2:e164. doi:10.1038/cddis.2011.48

    Article  PubMed  CAS  Google Scholar 

  51. Shmueli A, Oren M (2005) Life, death, and ubiquitin: taming the mule. Cell 121(7):963–965. doi:10.1016/j.cell.2005.06.018

    Article  PubMed  CAS  Google Scholar 

  52. Ploner C, Kofler R, Villunger A (2008) Noxa: at the tip of the balance between life and death. Oncogene 27(Suppl 1):S84–S92. doi:10.1038/onc.2009.46

    Article  PubMed  CAS  Google Scholar 

  53. Racay P, Hatok J, Hudecek J, Chudej J, Jurecekova J, Dobrota D (2008) Transcription of genes of p53-dependent apoptosis in acute leukaemia. Int J Mol Med 22(6):833–839

    PubMed  CAS  Google Scholar 

  54. Hauck P, Chao BH, Litz J, Krystal GW (2009) Alterations in the Noxa/Mcl-1 axis determine sensitivity of small cell lung cancer to the BH3 mimetic ABT-737. Mol Cancer Ther 8(4):883–892. doi:10.1158/1535-7163.MCT-08-1118

    Article  PubMed  CAS  Google Scholar 

  55. Chen S, Dai Y, Harada H, Dent P, Grant S (2007) Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67(2):782–791

    Article  PubMed  CAS  Google Scholar 

  56. High LM, Szymanska B, Wilczynska-Kalak U, Barber N, O’Brien R, Khaw SL et al (2010) The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol 77(3):483–494. doi:10.1124/mol.109.060780

    Article  PubMed  CAS  Google Scholar 

  57. Lin X, Morgan-Lappe S, Huang X, Li L, Zakula DM, Vernetti LA et al (2007) ‘Seed’ analysis of off-target siRNAs reveals an essential role of Mcl-1 in resistance to the small-molecule Bcl-2/Bcl-XL inhibitor ABT-737. Oncogene 26(27):3972–3979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Dietmar-Hopp Foundation (St. Leon-Rot, Germany) to W.R. and S.E.C. and from the Federal Ministry of Education and Research (BMBF) to W.R. (NGFNplus Brain Tumor Network; grant number 01GS0883). We thank Jutta Richter and Martina Keith for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Roth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3068 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagscherer, K.E., Fassl, A., Sinkovic, T. et al. p53-dependent regulation of Mcl-1 contributes to synergistic cell death by ionizing radiation and the Bcl-2/Bcl-XL inhibitor ABT-737. Apoptosis 17, 187–199 (2012). https://doi.org/10.1007/s10495-011-0664-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0664-3

Keywords

Navigation