Skip to main content
Log in

2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neuronal cell line SHSY5Y

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The persistent xenobiotic agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces neurotoxic effects that alters neurodevelopment and behavior both during development and adulthood. There are many ongoing efforts to determine the molecular mechanisms of TCDD-mediated neurotoxicity, the signaling pathways involved and its molecular targets in neurons. In this work, we have used SHSY5Y human neuroblastoma cells to characterize the TCDD-induced toxicity. TCDD produces a loss of viability linked to an increased caspase-3 activity, PARP-1 fragmentation, DNA laddering, nuclear fragmentation and hypodiploid (apoptotic) DNA content, in a similar way than staurosporine, a prototypical molecule of apoptosis induction. In addition, TCDD produces a decrease of mitochondrial membrane potential and an increase of intracellular calcium concentration (P < 0.05). Finally, based on the high lipophilic properties of the dioxin, we test the TCDD effect on the membrane integrity using sarcoplasmic reticulum vesicles as a model. TCDD produces calcium efflux through the membrane and an anisotropy decrease (P < 0.05) that reflects an increase in membrane fluidity. Altogether these results support the hypothesis that TCDD toxicity in SHSY5Y neuroblastoma cells provokes the disruption of calcium homeostasis, probably affecting membrane structural integrity, leading to an apoptotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed RG (2011) Perinatal TCDD exposure alters developmental neuroendocrine system. Food Chem Toxicol 49:1276–1284

    Article  PubMed  CAS  Google Scholar 

  2. Mates JM, Segura JA, Alonso FJ, Marquez J (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Rad Biol Med 49:1328–1341

    Article  PubMed  CAS  Google Scholar 

  3. Shibamoto T, Yasuhara A, Katami T (2007) Dioxin formation from waste incineration. Rev Environ Contam Toxicol 190:1–41

    Article  PubMed  CAS  Google Scholar 

  4. Bock KW, Kohle C (2006) Ah receptor: dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem Pharmacol 72:393–404

    Article  PubMed  CAS  Google Scholar 

  5. Mimura J, Fujii-Kuriyama Y (2003) Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta 1619:263–268

    Article  PubMed  CAS  Google Scholar 

  6. Schantz SL, Ferguson SA, Bowman RE (1992) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on behavior of monkeys in peer groups. Neurotoxicol Teratol 14:433–446

    Article  PubMed  CAS  Google Scholar 

  7. Schantz SL, Bowman RE (1989) Learning in monkeys exposed perinatally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Neurotoxicol Teratol 11:13–19

    Article  PubMed  CAS  Google Scholar 

  8. Rogan WJ, Gladen BC (1992) Neurotoxicology of PCBs and related compounds. Neurotoxicology 13:27–35

    PubMed  CAS  Google Scholar 

  9. Jacobson JL, Jacobson SW (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med 335:783–789

    Article  PubMed  CAS  Google Scholar 

  10. Jacobson JL, Jacobson SW (1997) Evidence for PCBs as neurodevelopmental toxicants in humans. Neurotoxicology 18:415–424

    PubMed  CAS  Google Scholar 

  11. Jacobson JL, Jacobson SW (1997) Teratogen update: polychlorinated biphenyls. Teratology 55:338–347

    Article  PubMed  CAS  Google Scholar 

  12. Legare ME, Hanneman WH, Barhoumi R, Burghardt RC, Tiffany-Castiglioni E (2000) 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters hippocampal astroglia-neuronal gap junctional communication. Neurotoxicology 21:1109–1116

    PubMed  CAS  Google Scholar 

  13. Nayyar T, Zawia NH, Hood DB (2002) Transplacental effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the temporal modulation of Sp1 DNA binding in the developing cerebral cortex and cerebellum. Exp Toxicol Pathol 53:461–468

    Article  PubMed  CAS  Google Scholar 

  14. Collins LL, Williamson MA, Thompson BD, Dever DP, Gasiewicz TA, Opanashuk LA (2008) 2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule neuron precursor maturation in the developing mouse cerebellum. Toxicol Sci 103:125–136

    Article  PubMed  CAS  Google Scholar 

  15. Boas M, Feldt-Rasmussen U, Main KM (2012) Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 355:240–248

    Article  PubMed  CAS  Google Scholar 

  16. Kim SY, Yang JH (2005) Neurotoxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in cerebellar granule cells. Exp Mol Med 37:58–64

    PubMed  CAS  Google Scholar 

  17. Lin CH, Chen CC, Chou CM, Wang CY, Hung CC, Chen JY, Chang HW, Chen YC, Yeh GC, Lee YH (2009) Knockdown of the aryl hydrocarbon receptor attenuates excitotoxicity and enhances NMDA-induced BDNF expression in cortical neurons. J Neurochem 111:777–789

    Article  PubMed  CAS  Google Scholar 

  18. Lin CH, Juan SH, Wang CY, Sun YY, Chou CM, Chang SF, Hu SY, Lee WS, Lee YH (2008) Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. J Neurochem 104:1415–1429

    Article  PubMed  CAS  Google Scholar 

  19. Marinkovic N, Pasalic D, Ferencak G, Grskovic B, Stavljenic Rukavina A (2010) Dioxins and human toxicity. Arh Hig Rada Toksikol 61:445–453

    Article  PubMed  CAS  Google Scholar 

  20. Hu W, Jones PD, DeCoen W, King L, Fraker P, Newsted J, Giesy JP (2003) Alterations in cell membrane properties caused by perfluorinated compounds. Comp Biochem Physiol C 135:77–88

    Google Scholar 

  21. Hortigon-Vinagre MP, Chardonnet S, Montigny C, Gutierrez-Martin Y, Champeil P, Henao F (2011) Inhibition by 4-hydroxynonenal (HNE) of Ca2+ transport by SERCA1a: low concentrations of HNE open protein-mediated leaks in the membrane. Free Rad Biol Med 50:323–336

    Article  PubMed  CAS  Google Scholar 

  22. Zundorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14:1275–1288

    Article  PubMed  Google Scholar 

  23. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33:2643–2652

    PubMed  CAS  Google Scholar 

  24. Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378:776–779

    Article  PubMed  CAS  Google Scholar 

  25. Sanfeliu C, Cristofol R, Toran N, Rodriguez-Farre E, Kim SU (1999) Use of human central nervous system cell cultures in neurotoxicity testing. Toxicol In Vitro 13:753–759

    Article  PubMed  CAS  Google Scholar 

  26. Chopra M, Schrenk D (2011) Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis-persistent pollutants affect programmed cell death. Crit Rev Toxicol 41:292–320

    Article  PubMed  CAS  Google Scholar 

  27. Sanchez-Martin FJ, Fernandez-Salguero PM, Merino JM (2010) 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis in neural growth factor (NGF)-differentiated pheochromocytoma PC12 cells. Neurotoxicol 31:267–276

    Article  CAS  Google Scholar 

  28. Sanchez-Martin FJ, Fernandez-Salguero PM, Merino JM (2011) Aryl hydrocarbon receptor-dependent induction of apoptosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin in cerebellar granule cells from mouse. J Neurochem 118:153–162

    Article  PubMed  CAS  Google Scholar 

  29. Mulero-Navarro S, Santiago-Josefat B, Pozo-Guisado E, Merino JM, Fernandez-Salguero PM (2003) Down-regulation of CYP1A2 induction during the maturation of mouse cerebellar granule cells in culture: role of nitric oxide accumulation. Eur J Neurosci 18:2265–2272

    Article  PubMed  Google Scholar 

  30. Valera E, Sanchez-Martin FJ, Ferrer-Montiel AV, Messeguer A, Merino JM (2008) NMDA-induced neuroprotection in hippocampal neurons is mediated through the protein kinase A and CREB (cAMP-response element-binding protein) pathway. Neurochem Int 53:148–154

    Article  PubMed  CAS  Google Scholar 

  31. Sanchez-Martin FJ, Valera E, Casimiro I, Merino JM (2010) Nerve growth factor increases the sensitivity to zinc toxicity and induces cell cycle arrest in PC12 cells. Brain Res Bull 81:458–466

    Article  PubMed  CAS  Google Scholar 

  32. Martin-Romero FJ, Garcia-Martin E, Gutierrez-Merino C (2002) Inhibition of oxidative stress produced by plasma membrane NADH oxidase delays low-potassium-induced apoptosis of cerebellar granule cells. J Neurochem 82:705–715

    Article  PubMed  CAS  Google Scholar 

  33. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  34. MacLennan DH (1970) Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 245:4508–4518

    PubMed  CAS  Google Scholar 

  35. De Foresta B, Henao F, Champeil P (1992) Kinetic characterization of the perturbation by dodecylmaltoside of sarcoplasmic reticulum Ca2+-ATPase. Eur J Biochem 209:1023–1034

    Article  PubMed  Google Scholar 

  36. Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, Raff MC (1996) Constitutive expression of the machinery for programmed cell death. J Cell Biol 133:1053–1059

    Article  PubMed  CAS  Google Scholar 

  37. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985

    PubMed  CAS  Google Scholar 

  38. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  39. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  40. Pohjanvirta R, Vartiainen T, Uusi-Rauva A, Monkkonen J, Tuomisto J (1990) Tissue distribution, metabolism, and excretion of 14C-TCDD in a TCDD-susceptible and a TCDD-resistant rat strain. Pharmacol Toxicol 66:93–100

    Article  PubMed  CAS  Google Scholar 

  41. Bell DR, Clode S, Fan MQ, Fernandes A, Foster PM, Jiang T, Loizou G, MacNicoll A, Miller BG, Rose M, Tran L, White S (2007) Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the developing male Wistar (Han) rat. I: no decrease in epididymal sperm count after a single acute dose. Toxicol Sci 99:214–223

    Article  PubMed  CAS  Google Scholar 

  42. Bell DR, Clode S, Fan MQ, Fernandes A, Foster PM, Jiang T, Loizou G, MacNicoll A, Miller BG, Rose M, Tran L, White S (2007) Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the developing male Wistar(Han) rat. II: chronic dosing causes developmental delay. Toxicol Sci 99:224–233

    Article  PubMed  CAS  Google Scholar 

  43. Fernandez M, Paradisi M, D’Intino G, Del Vecchio G, Sivilia S, Giardino L, Calza L (2010) A single prenatal exposure to the endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin alters developmental myelination and remyelination potential in the rat brain. J Neurochem 115:897–909

    Article  PubMed  CAS  Google Scholar 

  44. Williamson MA, Gasiewicz TA, Opanashuk LA (2005) Aryl hydrocarbon receptor expression and activity in cerebellar granule neuroblasts: implications for development and dioxin neurotoxicity. Toxicol Sci 83:340–348

    Article  PubMed  CAS  Google Scholar 

  45. Lee HG, Kim SY, Choi EJ, Park KY, Yang JH (2007) Translocation of PKC-βII is mediated via RACK-1 in the neuronal cells following dioxin exposure. Neurotoxicol 28:408–414

    Article  CAS  Google Scholar 

  46. Schwarz M, Buchmann A, Stinchcombe S, Kalkuhl A, Bock K (2000) Ah receptor ligands and tumor promotion: survival of neoplastic cells. Toxicol Lett 112–3:69–77

    Article  Google Scholar 

  47. McConkey DJ, Hartzell P, Duddy SK, Hakansson H, Orrenius S (1988) 2,3,7,8-Tetrachlorodibenzo-p-dioxin kills immature thymocytes by Ca2+-mediated endonuclease activation. Science 242:256–259

    Article  PubMed  CAS  Google Scholar 

  48. Kurl RN, Abraham M, Olnes MJ (1993) Early effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on rat thymocytes in vitro. Toxicology 77:103–114

    Article  PubMed  CAS  Google Scholar 

  49. Tombal B, Denmeade SR, Isaacs JT (1999) Assessment and validation of a microinjection method for kinetic analysis of [Ca2+]i in individual cells undergoing apoptosis. Cell Calcium 25:19–28

    Article  PubMed  CAS  Google Scholar 

  50. Lynch K, Fernandez G, Pappalardo A, Peluso JJ (2000) Basic fibroblast growth factor inhibits apoptosis of spontaneously immortalized granulosa cells by regulating intracellular free calcium levels through a protein kinase Cdelta-dependent pathway. Endocrinology 141:4209–4217

    Article  PubMed  CAS  Google Scholar 

  51. Dow GS, Hudson TH, Vahey M, Koenig ML (2003) The acute neurotoxicity of mefloquine may be mediated through a disruption of calcium homeostasis and ER function in vitro. Malar J 2:14

    Article  PubMed  Google Scholar 

  52. Pinton P, Rizzuto R (2006) Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13:1409–1418

    Article  PubMed  CAS  Google Scholar 

  53. Korge P, Weiss JN (1999) Thapsigargin directly induces the mitochondrial permeability transition. Eur J Biochem 265:273–280

    Article  PubMed  CAS  Google Scholar 

  54. Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, Youdim MB, Tsujimoto Y, Naoi M (2002) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 82:913–923

    Article  PubMed  CAS  Google Scholar 

  55. Shertzer HG, Genter MB, Shen D, Nebert DW, Chen Y, Dalton TP (2006) TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F(0)F(1)-ATP synthase and ubiquinone. Toxicol Appl Pharmacol 217:363–374

    Article  PubMed  CAS  Google Scholar 

  56. Tappenden DM, Lynn SG, Crawford RB, Lee K, Vengellur A, Kaminski NE, Thomas RS, LaPres JJ (2011) The aryl hydrocarbon receptor interacts with ATP5α1, a subunit of the ATP synthase complex, and modulates mitochondrial function. Toxicol Appl Pharmacol 254:299–310

    Article  PubMed  CAS  Google Scholar 

  57. Paajarvi G, Viluksela M, Pohjanvirta R, Stenius U, Hogberg J (2005) TCDD activates Mdm2 and attenuates the p53 response to DNA damaging agents. Carcinogenesis 26:201–208

    Article  PubMed  Google Scholar 

  58. Aly HA, Domenech O (2009) Cytotoxicity and mitochondrial dysfunction of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in isolated rat hepatocytes. Toxicol Lett 191:79–87

    Article  PubMed  CAS  Google Scholar 

  59. Alsharif NZ, Grandjean CJ, Murray WJ, Stohs SJ (1990) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced decrease in the fluidity of rat liver membranes. Xenobiotica 20:979–988

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the Junta de Extremadura, Spain (PRI07A019 to JM Merino), Junta de Extremadura (GRU10008) and from the Red Temática de Investigación Cooperativa en Cáncer (RTICC) (RD 06/020/1016, Fondo de Investigaciones Sanitarias (FIS), Carlos III Institute, Spanish Ministry of Health). AM-H, FJS-M and MPH-V are the recipients of predoctoral fellowships from the Junta de Extremadura (Spain). All Spanish funding is co-sponsored by the European Union FEDER program.

Conflict of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime M. Merino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Hernández, A., Sánchez-Martín, F.J., Hortigón-Vinagre, M.P. et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neuronal cell line SHSY5Y. Apoptosis 17, 1170–1181 (2012). https://doi.org/10.1007/s10495-012-0760-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0760-z

Keywords

Navigation